首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cesium‐lead halide perovskites (e.g. CsPbBr3) have gained attention because of their rich physical properties, but their bulk ferroelectricity remains unexplored. Herein, by alloying flexible organic cations into the cubic CsPbBr3, we design the first cesium‐based two‐dimensional (2D) perovskite ferroelectric material with both inorganic alkali metal and organic cations, (C4H9NH3)2CsPb2Br7 ( 1 ). Strikingly, 1 shows a high Curie temperature (Tc=412 K) above that of BaTiO3 (ca. 393 K) and notable spontaneous polarization (ca. 4.2 μC cm?2), triggered by not only the ordering of organic cations but also atomic displacement of inorganic Cs+ ions. To our knowledge, such a 2D bilayered Cs+‐based metal–halide perovskite ferroelectric material with inorganic and organic cations is unprecedented. 1 also shows photoelectric semiconducting behavior with large “on/off” ratios of photoconductivity (>103).  相似文献   

2.
Zero‐dimensional (0D) lead‐free perovskites have unique structures and optoelectronic properties. Undoped and Sb‐doped all inorganic, lead‐free, 0D perovskite single crystals A2InCl5(H2O) (A=Rb, Cs) are presented that exhibit greatly enhanced yellow emission. To study the effect of coordination H2O, Sb‐doped A3InCl6 (A=Rb, Cs) are also synthesized and further studied. The photoluminescence (PL) color changes from yellow to green emission. Interestingly, the photoluminescence quantum yield (PLQY) realizes a great boost from <2 % to 85–95 % through doping Sb3+. We further explore the effect of Sb3+ dopants and the origin of bright emission by ultrafast transient absorption techniques. Furthermore, Sb‐doped 0D rubidium indium chloride perovskites show excellent stability. These findings not only provide a way to design a set of new high‐performance 0D lead‐free perovskites, but also reveal the relationship between structure and PL properties.  相似文献   

3.
Piezoelectric materials are a class of important functional materials applied in high‐voltage sources, sensors, vibration reducers, actuators, motors, and so on. Herein, [(CH3)3S]3[Bi2Br9]( 1 ) is a brilliant semiconducting organic–inorganic hybrid perovskite‐type non‐ferroelectric piezoelectric with excellent piezoelectricity. Strikingly, the value of the piezoelectric coefficient d33 is estimated as ≈18 pC N?1. Such a large piezoelectric coefficient in non‐ferroelectric piezoelectric has been scarcely reported and is comparable with those of typically one‐composition non‐ferroelectric piezoelectrics such as ZnO (3pC N?1) and much greater than those of most known typical materials. In addition, 1 exhibits semiconducting behavior with an optical band gap of ≈2.58 eV that is lower than the reported value of 3.37 eV for ZnO. This discovery opens a new avenue to exploit molecular non‐ferroelectric piezoelectric and should stimulate further exploration of non‐ferroelectric piezoelectric due to their high stability and low loss characteristics.  相似文献   

4.
Self‐powered photodetection driven by ferroelectric polarization has shown great potential in next‐generation optoelectronic devices. Hybrid perovskite ferroelectrics that combine polarization and semiconducting properties have a promising position within this portfolio. Herein, we demonstrate the realization of self‐powered photodetection in a new developed biaxial ferroelectric, (EA)2(MA)2Pb3Br10 ( 1 , EA is ethylammonium and MA is methylammonium), which displays high Curie temperature (375 K), superior spontaneous polarization (3.7 μC cm?2), and unique semiconducting nature. Strikingly, without an external energy supply, 1 exhibits an direction‐selectable photocurrent with fascinating attributes including high photocurrent density (≈4.1 μA cm?2), high on/off switching ratio (over 106), and ultrafast response time (96/123 μs); such merits are superior to those of the most active ferroelectric oxide BiFeO3. Further studies reveal that strong inversion symmetry breaking in 1 provides a desirable driving force for carrier separation, accounting for such electrically tunable self‐powered photoactive behaviors. This work sheds light on exploring new multifunctional hybrid perovskites and advancing the design of intelligent photoelectric devices.  相似文献   

5.
Although two‐dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room‐temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room‐temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm?2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility‐lifetime product (μτ=1.0×10?3 cm2 V?1) for detecting X‐ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X‐ray‐sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

6.
Organic–inorganic hybrid perovskites, with the formula ABX3 (A=organic cation, B=metal cation, and X=halide; for example, CH3NH3PbI3), have diverse and intriguing physical properties, such as semiconduction, phase transitions, and optical properties. Herein, a new ABX3‐type semiconducting perovskite‐like hybrid, (hexamethyleneimine)PbBr3 ( 1 ), consisting of one‐dimensional inorganic frameworks and cyclic organic cations, is reported. Notably, the inorganic moiety of 1 adopts a perovskite‐like architecture and forms infinite columns composed of face‐sharing PbBr6 octahedra. Strikingly, the organic cation exhibits a highly flexible molecular configuration, which triggers an above‐room‐temperature phase transition, at Tc=338.8 K; this is confirmed by differential scanning calorimetry (DSC), specific heat capacity (Cp), and dielectric measurements. Further structural analysis reveals that the phase transition originates from the molecular configurational distortion of the organic cations coupled with small‐angle reorientation of the PbBr6 octahedra inside the inorganic components. Moreover, temperature‐dependent conductivity and UV/Vis absorption measurements reveal that 1 also displays semiconducting behavior below Tc. It is believed that this work will pave a potential way to design multifeatured perovskite hybrids by utilizing cyclic organic amines.  相似文献   

7.
We report the development of a molecular ferroelectric material inspired by the hexamethylenetetramine (hmta) non‐centrosymmetric molecular rotator. The bromide salt of diprotonated hmta (hmtaH2) crystalized as (hmtaH2)(NH4)Br3 in a metal‐free ABX3 perovskite‐type structure, in which the A and B sites are occupied by hmtaH22+ and ammonium cations, respectively. The compound crystallized in the Pma2 polar space group. A distorted polar perovskite structure formed owing to the distortion of {(NH4)Br6} octahedrons that are stabilized through the formation of NH???Br hydrogen bonds and the orientational ordering of positive charges on the non‐centrosymmetric hmtaH2 molecules. This spontaneous polarization exhibited ferroelectric behavior with a nominally high Curie temperature (>400 K), in which the electrical switching of polarization originates from the rotation of the hmtaH2 unit.  相似文献   

8.
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters.  相似文献   

9.
Lead‐free zero‐dimensional (0D) organic‐inorganic metal halide perovskites have recently attracted increasing attention for their excellent photoluminescence properties and chemical stability. Here, we report the synthesis and characterization of an air‐stable 0D mixed metal halide perovskite (C8NH12)4Bi0.57Sb0.43Br7?H2O, in which individual [BiBr6]3? and [SbBr6]3? octahedral units are completely isolated and surrounded by the large organic cation C8H12N+. Upon photoexcitation, the bulk crystals exhibit ultra‐broadband emission ranging from 400 to 850 nm, which originates from both free excitons and self‐trapped excitons. This is the first example of 0D perovskites with broadband emission spanning the entire visible spectrum. In addition, (C8NH12)4Bi0.57Sb0.43Br7?H2O exhibits excellent humidity and light stability. These findings present a new direction towards the design of environmentally‐friendly, high‐performance 0D perovskite light emitters.  相似文献   

10.
Recently, with the prevalence of `perovskite fever', organic–inorganic hybrid perovskites (OHPs) have attracted intense attention due to their remarkable structural variability and highly tunable properties. In particular, the optical and electrical properties of organic–inorganic hybrid lead halides are typical of the OHP family. Besides, although three‐dimensional hybrid perovskites, such as [CH3NH3]PbX3 (X = Cl, Br or I), have been reported, the development of new organic–inorganic hybrid semiconductors is still an area in urgent need of exploration. Here, an organic–inorganic hybrid lead halide perovskite is reported, namely poly[(2‐azaniumylethyl)trimethylphosphanium [tetra‐μ‐bromido‐plumbate(II)]], {(C5H16NP)[PbBr4]}n, in which an organic cation is embedded in inorganic two‐dimensional (2D) mesh layers to produce a sandwich structure. This unique sandwich 2D hybrid perovskite material shows an indirect band gap of ~2.700 eV. The properties of this compound as a semiconductor are demonstrated by a series of optical characterizations and indicate potential applications for optical devices.  相似文献   

11.
Hybrid organo–metal halide perovskite materials, such as CH3NH3PbI3, have been shown to be some of the most competitive candidates for absorber materials in photovoltaic (PV) applications. However, their potential has not been completely developed, because a photovoltaic effect with an anomalously large voltage can be achieved only in a ferroelectric phase, while these materials are probably ferroelectric only at temperatures below 180 K. A new hexagonal stacking perovskite‐type complex (3‐pyrrolinium)(CdCl3) exhibits above‐room‐temperature ferroelectricity with a Curie temperature Tc=316 K and a spontaneous polarization Ps=5.1 μC cm?2. The material also exhibits antiparallel 180° domains which are related to the anomalous photovoltaic effect. The open‐circuit photovoltage for a 1 mm‐thick bulky crystal reaches 32 V. This finding could provide a new approach to develop solar cells based on organo–metal halide perovskites in photovoltaic research.  相似文献   

12.
Colloidal nanocrystals (NCs) of metal halide perovskite have recently aroused great research interest, due to their remarkable optical and electronic properties. We report a solution synthesis of a new member in this category, that is, all‐inorganic lead‐free cesium germanium iodine (CsGeI3) perovskite NCs. These CsGeI3 colloidal NCs are confirmed to adopt a rhombohedral structure. Moreover, the electron beam‐induced transformations of these lead‐free perovskite NCs have been investigated for the first time. The fracture of single‐crystalline CsGeI3 nanocubes occurs first, followed by the emergence and growth of cesium iodine (CsI) single crystals and the final fragmentation into small debris with random orientations. Notably, the electron‐reduced Ge species in CsGeI3 nanocubes exhibit a distinctive transformation path, compared to heavier Pb atoms in lead halide perovskite NCs.  相似文献   

13.
We investigated the structural principles of novel germanium modifications derived by oxidative coupling of Zintl‐type [Ge9]4?clusters in various ways. The structures, stabilities, and electronic properties of the predicted {2[Ge9]n} sheet, {1[Ge9]n} nanotubes, and fullerene‐like {Ge9}n cages were studied by using quantum chemical methods. The polyhedral {Ge9}n cages are energetically comparable with bulk‐like nanostructures of the same size, in good agreement with previous experimental findings. Three‐dimensional structures derived from the structures of lower dimensionality are expected to shed light on the structural characteristics of the existing mesoporous Ge materials that possess promising optoelectronic properties. Furthermore, 3D networks derived from the polyhedral {Ge9}n cages lead to structures that are closely related to the well‐known LTA zeolite framework, suggesting further possibilities for deriving novel mesoporous modifications of germanium. Raman and IR spectra and simulated X‐ray diffraction patterns of the predicted materials are given to facilitate comparisons with experimental results. The studied novel germanium modifications are semiconducting, and several structure types possess noticeably larger band gaps than bulk α‐Ge.  相似文献   

14.
Hybrid organic–inorganic lead halide perovskite APbX3 pigments, such as methylammonium lead iodide, have recently emerged as excellent light harvesters in solid‐state mesoscopic solar cells. An important target for the further improvement of the performance of perovskite‐based photovoltaics is to extend their optical‐absorption onset further into the red to enhance solar‐light harvesting. Herein, we show that this goal can be reached by using a mixture of formamidinium (HN=CHNH3+, FA) and methylammonium (CH3NH3+, MA) cations in the A position of the APbI3 perovskite structure. This combination leads to an enhanced short‐circuit current and thus superior devices to those based on only CH3NH3+. This concept has not been applied previously in perovskite‐based solar cells. It shows great potential as a versatile tool to tune the structural, electrical, and optoelectronic properties of the light‐harvesting materials.  相似文献   

15.
The perovskite structure is rich in ferroelectricity. In contrast, ferroelectric antiperovskites have been scarcely confirmed experimentally since the discovery of M3AB‐type antiperovskites in the 1930s. Ferroelectricity is now revealed in an organic–inorganic hybrid X3AB antiperovskite structure, which exhibits a clear ferroelectric phase transition 6/mmmF6mm with a high Curie point of 480 K. The physical properties across the phase transition are obviously changed along with the symmetry requirements, providing solid experimental evidence for the ferroelectric phase transition. More interestingly, the discovered antiperovskite shows intense photoluminescence and triboluminescence properties. The confirmation of the triboluminescent ferroelectric antiperovskite will open new avenues to explore excellent optoelectronic properties in the antiperovskite family.  相似文献   

16.
The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare‐earth ions doping and intrinsic emission of lead‐free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first‐principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D47F6‐3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi‐doped Cs2Ag(In1?xTbx)Cl6 NCs could be continuously tuned from green to orange, through the efficient energy‐transfer channel from self‐trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead‐free perovskite NCs and to expand their luminescence applications.  相似文献   

17.
The reduced dimension perovskite including 2D perovskites are one of the most promising strategies to stabilize lead halide perovskite. A mixed‐cation 2D perovskite based on a steric phenyltrimethylammonium (PTA) cation is presented. The PTA‐MA mixed‐cation 2D perovskite of PTAMAPbI4 can be formed on the surface of MAPbI3 (PTAI‐MAPbI3) by controllable PTAI intercalation by either spin coating or soaking. The PTAMAPbI4 capping layer can not only passivate PTAI‐MAPbI3 perovskite but also act as MA+ locker to inhibit MAI extraction and significantly enhance the stability. The highly stable PTAI‐MAPbI3 based perovskite solar cells exhibit a reproducible photovoltaic performance with a champion PCE of 21.16 %. Such unencapsulated devices retain 93 % of initial efficiency after 500 h continuous illumination. This steric mixed‐cation 2D perovskite as MA+ locker to stabilize the MAPbI3 is a promising strategy to design stable and high‐performance hybrid lead halide perovskites.  相似文献   

18.
By the self‐assembly of 2‐aminobenzimidazole ( L ), Nadca (Nadca = dicyanamide sodium) and CdCl2, a novel one‐dimensional (1D) CdII coordination polymer [Cd(μ1,5‐dca)(μ1,3,5‐dca) L ]n ( 1 ) ( L = 2‐aminobenzimidazole) has been synthesized and structurally characterized by single crystal X‐ray diffraction, element analysis and FT‐IR spectra. In 1 μ1,5‐bidentate and μ1,3,5‐tridentate dca ligands bridge CdII ions to form a 1D tube‐like structure, which presents a new 1D tubular structural motif of (3.4(2))(3(2).4(2).5(3)) topology in M‐dca systems (M = metallic). Solid‐state blue fluorescence spectrum of 1 also has been determined and compared with that of free ligand.  相似文献   

19.
Electron‐transfer (redox) thermochromism was successfully used for switching the conductance of semiconductors, by introducing a thermally active organic component into an inorganic semiconducting framework. A moisture‐resistant semiconductor {(MV)2[Pb7Br18]}n (MV2+=methyl viologen cation) has been prepared through an in situ synthetic method for MV2+. It features a rare 3D haloplumbate open framework and unprecedented electron‐transfer thermochromic behavior in haloplumbates. The electrical conductivity of this compound dropped significantly after coloration and restored after decoloration, which was satisfactorily explained by valence band XPS and theoretical data. This work not only offers a new approach to modify electrical properties of semiconductors without altering components or structures, but may lead to the development of over‐temperature color indicators, circuit overload protectors or photovoltaic materials.  相似文献   

20.
Halide double perovskites have recently emerged as a promising environmentally friendly optoelectronic and photovoltaic material for their inherent thermodynamic stability, high defect tolerance, and appropriate band gaps. However, to date, no ferroelectric material based on halide double perovskites has been discovered. Herein, by hetero‐substitution of lead and cation intercalation of n‐propylamine, the first halide double perovskite ferroelectric, (n‐propylammonium)2CsAgBiBr7 ( 1 ), is reported and it exhibits distinct ferroelectricity with a notable saturation polarization of about 1.5 μC cm?2. More importantly, single‐crystal photodetectors of 1 exhibit extraordinary performance with containing high on/off ratios of about 104, fast response rates of 141 μs, and detectivity as high as 5.3×1011 Jones. This finding opens a new way to design high‐performance perovskite ferroelectrics, and provides a viable approach in the search for stable and lead‐free optoelectronic materials as an alternative to the lead‐containing system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号