首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoporous silica solids can offer opportunities for hosting photocatalytic components such as various tetra‐coordinated transition metal ions to form systems referred to as “single‐site photocatalysts”. Under UV/visible‐light irradiation, they form charge transfer excited states, which exhibit a localized charge separation and thus behave differently from those of bulk semiconductor photocatalysts exemplified by TiO2. This account presents an overview of the design of advanced functional materials based on the unique photo‐excited mechanisms of single‐site photocatalysts. Firstly, the incorporation of single‐site photocatalysts within transparent porous silica films will be introduced, which exhibit not only unique photocatalytic properties, but also high surface hydrophilicity with self‐cleaning and antifogging applications. Secondary, photo‐assisted deposition (PAD) of metal precursors on single‐site photocatalysts opens up a new route to prepare nanoparticles. Thirdly, visible light sensitive photocatalysts with single and/or binary oxides moieties can be prepared so as to use solar light, the ideal energy source.  相似文献   

2.
In recent decades, solar‐driven hydrogen production over semiconductors has attracted tremendous interest owing to the global energy and environmental crisis. Among various semiconductor materials, TiO2 exhibits outstanding photocatalytic properties and has been extensively applied in diverse photocatalytic and photoelectric systems. However, two major drawbacks limit practical applications, namely, high charge‐recombination rate and poor visible‐light utilization. In this work, heterostructured TiO2 nanotube arrays grafted with Cr‐doped SrTiO3 nanocubes were fabricated by simply controlling the kinetics of hydrothermal reactions. It was found that coupling TiO2 nanotube arrays with regular SrTiO3 nanocubes can significantly improve the charge separation. Meanwhile, doping Cr cations into SrTiO3 nanocubes proved to be an effective and feasible approach to enhance remarkably the visible‐light response, which was also confirmed by theoretical calculations. As a result, the rate of photoelectrochemical hydrogen evolution of these novel heteronanostructures is an order of magnitude larger than those of TiO2 nanotube arrays and other previously reported SrTiO3/TiO2 nanocomposites under visible‐light irradiation. Furthermore, the as‐prepared Cr‐doped SrTiO3/TiO2 heterostructures exhibit excellent durability and stability, which are favorable for practical hydrogen production and photoelectric nanodevices.  相似文献   

3.
TiO2 doped with transition metals shows improved photocatalytic efficiency. Herein the electronic and optical properties of Mo‐doped TiO2 with defects are investigated by DFT calculations. For both rutile and anatase phases of TiO2, the bandgap decreases continuously with increasing Mo doping level. The 4d electrons of Mo introduce localized states into the forbidden band of TiO2, and this shifts the absorption edge into the visible‐light region and enhances the photocatalytic activity. Since defects are universally distributed in TiO2 or doped TiO2, the effect of oxygen deficiency due to oxygen vacancies or interstitial Mo atoms is systemically studied. Oxygen vacancies associated with the Mo dopant atoms or interstitial Mo will reduce the spin polarization and magnetic moment of Mo‐doped TiO2. Moreover, oxygen deficiency has a negative impact on the improved photocatalytic activity of Mo‐doped TiO2. The current results indicate that substitutional Mo, interstitial Mo, and oxygen vacancy have different impacts on the electronic/optical properties of TiO2 and are suited to different applications.  相似文献   

4.
In this study, the photocatalytic efficiency of anatase‐type TiO2 nanoparticles synthesized using the sol–gel low‐temperature method, were enhanced by a combined process of copper reduction and surface hydroxyl groups enhancement. UV–light‐assisted photo and NaBH4‐assisted chemical reduction methods were used for deposition of copper onto TiO2. The surface hydroxyl groups of TiO2 were enhanced with the assistance of NaOH modification. The prepared catalysts were immobilized on glass plates and used as the fixed‐bed systems for the removal of phenazopyridine as a model drug contaminant under visible light irradiation. NaOH‐modified Cu/TiO2 nanoparticles demonstrated higher photocatalytic efficiency than that of pure TiO2 due to the extending of the charge carriers lifetime and enhancement of the adsorption capacity of TiO2 toward phenazopyridine. The relationship of structure and performance of prepared nanoparticles has been established by using various techniques, such as XRD, XPS, TEM, EDX, XRF, TGA, DRS and PL. The effects of preparation variables, including copper content, reducing agents rate (NaBH4 concentration and UV light intensity) and NaOH concentration were investigated on the photocatalytic efficiency of NaOH‐modified Cu/TiO2 nanoparticles.  相似文献   

5.
TiO2 nanotubes (TNTs) were successfully synthesized from different alkaline media (i.e., NaOH and KOH) by using a microwave hydrothermal process. The effects of different alkaline media on the formation of TiO2 nanotubes and their physicochemical properties were investigated. The phases of different TiO2 nanostructures were studied by using X-ray diffraction patterns. Morphologies of the nanostructures were observed with a transmission electron microscope. The optical properties of the nanostructures were evaluated through the absorption behavior using UV–Vis diffuse reflectance spectroscopy. The photocatalytic activities of the TiO2 nanostructures were evaluated by the degradation of methylene blue aqueous dye solution under the simulated solar light irradiation. Similarly, the photovoltaic efficiencies of the prepared samples were investigated by making photo-anode layers in the Dye Sensitized Solar Cells (DSSCs). The results revealed that in comparison to the single layered TiO2 nanostructures in the DSSC, creation of a double layer structure significantly enhanced the efficiency of DSSC.  相似文献   

6.
Titanium dioxide (TiO2) is one of the best semiconductor photocatalysts with optical band gap of 3.2 eV. The optical band gap and photocatalytic properties could be further tuned by tailoring shape, size, composition, and morphology of the nanostructures. Hydrothermal synthesis methods have been applied to produce well-controlled nanostructured TiO2 materials with different morphologies and improved optoelectronic properties. Among various morphologies, one-dimensional (1D) TiO2 nanostructures are of great importance in the field of energy, environmental, and biomedical because of the directional transmission properties resulting from their 1D geometry. Particularly, TiO2 nanorods (NRs) have gained special attention because of their densely packed structure, quantum confinement effect, high aspect ratio, and large specific surface area that could specially improve the directional charge transmission efficiency. This results in the effective photogenerated charge separation and light absorption, which are really important for potential applications of TiO2-based materials for photocatalytic and other important applications. In this review, hydrothermal syntheses of TiO2 NRs including the formation chemistry and the growth mechanism of NRs under different chemical environments and effects of various synthesis parameters (pH, reaction temperature, reaction time, precursors, solvents etc.) on morphology and optoelectronic properties have been discussed. Recent developments in the hydrothermal synthesis of TiO2 NRs and tailoring of their surface properties through various modification strategies such as defect creation, doping, sensitization, surface coating, and heterojunction formation with various functional nanomaterials (plasmonic, oxide, quantum dots, graphene-based nanomaterials, etc.) have been reported to improve the photocatalytic activities. Furthermore, applications of TiO2 NRs/tailored TiO2 NRs as superior photocatalysts in degradation of organic pollutants and bacterial disinfection have been discussed with emphasis on mechanisms of action and recent advances in the fields.  相似文献   

7.
In this work, a nitrogen-doped anatase TiO2 nanocrystal is prepared by a modified sol-gel preparation method using the nonionic surfactant (polyoxyethylene sorbitan monooleate) as a structural controller and a soft template. The as-prepared samples are characterized by X-ray diffraction, Raman spectroscopy, UVVis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy techniques. Then the photocatalytic activity of these samples is assessed by the photocatalytic oxidation of phenol under visible light irradiation. The phenol concentration is measured using a UV-Vis spectrometer. Experimental results show that N-doping leads to an excellent visible light photocatalytic activity of the TiO2 nanocatalyst. Furthermore, the formation energy and electronic structure of pure and N-doped anatase TiO2 are described by density functional theory (DFT) calculations. It is found that N-doping narrowed the band gap of bare TiO2, which leads to an excellent visible light photocatalytic activity of N–TiO2 nanocatalysts. Therefore, the prepared N–TiO2 photocatalyst is expected to find the use in organic pollutant degradation under solar light illumination.  相似文献   

8.
Exploiting advanced photocatalysts under visible light is of primary significance for the development of environmentally relevant photocatalytic decontamination processes. In this study, the ionic liquid (IL), 1‐butyl‐3‐methylimidazolium tetrafluoroborate, was employed for the first time as both a structure‐directing agent and a dopant for the synthesis of novel fluorinated B/C‐codoped anatase TiO2 nanocrystals (TIL) through hydrothermal hydrolysis of tetrabutyl titanate. These TIL nanocrystals feature uniform crystallite and pore sizes and are stable with respect to phase transitions, crystal ripening, and pore collapse upon calcination treatment. More significantly, these nanocrystals possess abundant localized states and strong visible‐light absorption in a wide range of wavelengths. Because of synergic interactions between titania and codopants, the calcined TIL samples exhibited high visible‐light photocatalytic activity in the presence of oxidizing Rhodamine B (RhB). In particular, 300 °C‐calcined TIL was most photocatalytically active; its activity was much higher than that of TiO1.98N0.02 and reference samples (TW) obtained under identical conditions in the absence of ionic liquid. Furthermore, the possible photocatalytic oxidation mechanism and the active species involved in the RhB degradation photocatalyzed by the TIL samples were primarily investigated experimentally by using different scavengers. It was found that both holes and electrons, as well as their derived active species, such as .OH, contributed to the RhB degradation occurring on the fluorinated B/C‐codoped TiO2 photocatalyst, in terms of both the photocatalytic reaction dynamics and the reaction pathway. The synthesis of the aforementioned novel photocatalyst and the identification of specific active species involved in the photodegradation of dyes could shed new light on the design and synthesis of semiconductor materials with enhanced photocatalytic activity towards organic pollutants.  相似文献   

9.
Three‐dimensional (3D) porous metal and metal oxide nanostructures have received considerable interest because organization of inorganic materials into 3D nanomaterials holds extraordinary properties such as low density, high porosity, and high surface area. Supramolecular self‐assembled peptide nanostructures were exploited as an organic template for catalytic 3D Pt‐TiO2 nano‐network fabrication. A 3D peptide nanofiber aerogel was conformally coated with TiO2 by atomic layer deposition (ALD) with angstrom‐level thickness precision. The 3D peptide‐TiO2 nano‐network was further decorated with highly monodisperse Pt nanoparticles by using ozone‐assisted ALD. The 3D TiO2 nano‐network decorated with Pt nanoparticles shows superior catalytic activity in hydrolysis of ammonia–borane, generating three equivalents of H2.  相似文献   

10.
Hierarchical macro‐/mesoporous N‐doped TiO2/graphene oxide (N‐TiO2/GO) composites were prepared without using templates by the simple dropwise addition mixed solution of tetrabutyl titanate and ethanol containg graphene oxide (GO) to the ammonia solution, and then calcined at 350 °C. The as‐prepared samples were characterized by scanning electron microscopy (SEM), Brunauer‐Emmett‐Teller (BET) surface area, X‐ray diffraction (XRD), Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and UV‐Vis absorption spectroscopy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange in an aqueous solution under visible‐light irradiation. The results show that N‐TiO2/GO composites exhibited enhanced photocatalytic activity. GO content exhibited an obvious influence on photocatalytic performance, and the optimal GO addition content was 1 wt%. The enhanced photocatalytic activity could be attributed to the synergetic effects of three factors including the improved visible light absorption, the hierarchical macro‐mesoporous structure, and the efficient charge separation by GO.  相似文献   

11.
Ideal solar‐to‐fuel photocatalysts must effectively harvest sunlight to generate significant quantities of long‐lived charge carriers necessary for chemical reactions. Here we demonstrate the merits of augmenting traditional photoelectrochemical cells with plasmonic nanoparticles to satisfy these daunting photocatalytic requirements. Electrochemical techniques were employed to elucidate the mechanics of plasmon‐mediated electron transfer within Au/TiO2 heterostructures under visible‐light (λ>515 nm) irradiation in solution. Significantly, we discovered that these transferred electrons displayed excited‐state lifetimes two orders of magnitude longer than those of electrons photogenerated directly within TiO2 via UV excitation. These long‐lived electrons further enable visible‐light‐driven H2 evolution from water, heralding a new photocatalytic paradigm for solar energy conversion.  相似文献   

12.
Photocatalytic degradation of glyphosate contaminated in water was investigated. The N‐doped SnO2/TiO2 films were prepared via sol–gel method, and coated on glass fibers by dipping method. The effects of nitrogen doping on coating morphology, physical properties and glyphosate degradation rates were experimentally determined. Main variable was the concentration of nitrogen doping in range 0–40 mol%. Nitrogen doping results in shifting the absorption wavelengths and narrowing the band gap energy those lead to enhancement of photocatalytic performance. The near optimal 20N/SnO2/TiO2 composite thin film exhibited about two‐ and four‐folds of glyphosate degradation rates compared to the undoped SnO2/TiO2 and TiO2 films when photocatalytic treatment were performed under UV and solar irradiations, respectively, due to its narrowest band gap energy (optical absorption wavelength shifting to visible light region) and smallest crystallite size influenced by N‐doping.  相似文献   

13.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

14.
As a typical photocatalyst for CO2 reduction, practical applications of TiO2 still suffer from low photocatalytic efficiency and limited visible‐light absorption. Herein, a novel Au‐nanoparticle (NP)‐decorated ordered mesoporous TiO2 (OMT) composite (OMT‐Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO2 shows high photocatalytic performance for CO2 reduction under visible light. The ordered mesoporous TiO2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three‐dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO2 reduction under visible light by constructing OMT‐based Au‐SPR‐induced photocatalysts.  相似文献   

15.
《中国化学》2018,36(6):538-544
Bi‐ and Y‐codoped TiO2 photocatalysts were synthesized through a sol‐gel method, and they were applied in the photocatalytic reduction of CO2 to formic acid under visible light irradiation. The results revealed that, after doping Bi and Y, the surface area of TiO2 was increased from 5.4 to 93.1 m2/g when the mole fractions of doping Bi and Y were 1.0% and 0.5%, respectively, and the lattice structures of the photocatalysts changed and the oxygen vacancies on the surface of the photocatalysts formed, which would act as the electron capture centers and slow down the recombination of photo‐induced electron and hole. The photocurrent spectra also proved that the photocatalysts had better electronic transmission capacities. The HCOOH yield in CO2 photocatalytic reduction was 747.82 μmol/gcat by using 1% Bi‐0.5% Y‐TiO2 as a photocatalyst. The HCOOH yield was 1.17 times higher than that by using 1% Bi‐TiO2, and 2.23 times higher than that by using pure TiO2. Furthermore, the 1% Bi‐0.5% Y‐TiO2 showed the highest apparent quantum efficiency (AQE) of 4.45%.  相似文献   

16.
First principles calculations based on density functional theory (DFT) have been performed to design a new set of donor‐corrole‐bridge‐acceptor type systems based on the gallium corroles for dye‐sensitized solar cell applications. The design strategy for these systems is based on the benchmark studies done on the experimentally tested aluminum, gallium, and tin metallocorroles. Unfortunately, corrole analogues display poor light to current conversion efficiencies in spite of their desirable photophysical properties. Thus, improving the efficiency of corrole analogues has become a major challenge and ways to identify solutions to this is of outstanding fundamental importance. This study shows the lack of charge directionality toward anchoring group as plausible reason for the poor efficiencies of reported corrole systems, which enabled us to fine‐tune the electronic and optical properties of new D‐π‐A type systems, COR1‐COR4. The molecular geometries, electronic structure, and binding orientation of these systems on TiO2 surface were investigated using DFT, TD‐DFT, and PBC methods. When compared with the reported corroles, COR1‐COR4 have a smaller band gaps, red‐shifted absorption spectra with higher extinction coefficients (105 M?1 cm?1) and improved nonlinear optical properties. Importantly, results revealed that these dyes bind with two‐arm mode to TiO2 surface and the density of states of the dye@TiO2 elucidate strong coupling between the dyes and TiO2 surface. We anticipate that the unique photophysical properties of these sensitizers will trigger the experimental efforts to yield a new generation of sensitizers based on corrole macrocyle. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Porous peanut-like TiO2/BiVO4 composite nanostructures were synthesized via a template-free hydrothermal process with bismuth nitrate, ammonium metavanadate and anatase TiO2 as raw materials. The crystal structures, morphologies, and optical properties of the as-prepared samples were characterized by X-ray powder diffraction, transmission electron microscope, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–visible absorption spectra. Simulated sun-light induced photocatalytic degradation of Rhodamine B by porous peanut-like TiO2/BiVO4 nanostructures in the absence and presence of H2O2 has been investigated, and the results show these porous composite nanostructures with higher photocatalytic activity than pure BiVO4 and anatase TiO2. When TiO2/BiVO4 heterostructures were used as the photocatalysts under simulated sun-light irradiation, BiVO4 could act as a sensitizer to absorb the visible light. Meanwhile, coupling different band-gap semiconductors of TiO2 and BiVO4, the compound facilitate separation of the photogenerated carriers under the internal field induced by the different electronic band structures of semiconductors.  相似文献   

18.
An Au/TiO2 nanostructure was constructed to obtain a highly efficient visible‐light‐driven photocatalyst. The design was based on a three‐dimensional ordered assembly of thin‐shell Au/TiO2 hollow nanospheres (Au/TiO2‐3 DHNSs). The designed photocatalysts exhibit not only a very high surface area but also photonic behavior and multiple light scattering, which significantly enhances visible‐light absorption. Thus Au/TiO2‐3 DHNSs exhibit a visible‐light‐driven photocatalytic activity that is several times higher than conventional Au/TiO2 nanopowders.  相似文献   

19.
In this work, high‐performance dye‐sensitized solar cells (DSSCs) based on new low‐cost visible nickel complex dye (VisDye), TiO2 nanoparticle/nanotube composites electrodes, carbon nanoparticles counter electrodes, and ionic liquids electrolytes have been fabricated. The electronic structure, optical spectroscopy, and electrochemical properties of the VisDye were studied. Experimental results indicate that it is beneficial to improve the electron transport and power conversion efficiency using the nickel complex VisDye and TiO2 nanoparticle/nanotube composites. Under optimized conditions, the solar energy conversion efficiencies were measured. The short‐circuit current density (JSC), the open‐circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) of the DSSCs are 10.01 mA/cm2, 516 mV, 0.68, and 3.52%, respectively. This study demonstrates that the combination of new VisDye with TiO2 nanoparticle/nanotube composites electrodes and carbon nanoparticles counter electrodes provide a way to fabricate highly efficient dye‐sensitized solar cells in low‐cost production.  相似文献   

20.
Plane‐wave‐based pseudopotential density functional theory (DFT) calculations are used to elucidate the origin of the high photocatalytic efficiency of carbonate‐doped TiO2. Two geometrically possible doping positions are considered, including interstitial and substitutional carbon atoms on Ti sites. From the optical absorption properties calculations, we believe that the formation of carbonates after doping with interstitial carbon atoms is crucial, whereas the contribution from the cationic doping on Ti sites is negligible. The carbonate species doped TiO2 exhibits excellent absorption in the visible‐light region of 400–800 nm, in good agreement with experimental observations. Electronic structure analysis shows that the carbonate species introduce an impurity state from Ti 3d below the conduction band. Excitations from the impurity state to the conduction band may be responsible for the high visible‐light activity of the carbon doped TiO2 materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号