首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Here, task‐specific ionic liquid solid‐phase extraction is proposed for the first time. In this approach, a thiourea‐functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid‐phase extraction column are used for the selective extraction and preconcentration of ultra‐trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5–40.0 ng/mL with the detection limit of 0.13 ng/mL (3sb/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents.  相似文献   

2.
Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.3 mol/L). The detection limit of this method for 2,4-D was 0.15 μg/L, and the relative standard deviation was 2.3% for fortified tap water samples and 2.5% for fortified riverine water sample at the 10 μg/L level. The method was validated using fortified tap water and riverine water samples with known amount of 2,4-D at the 0.4, 10, and 30 μg/L levels, respectively.  相似文献   

3.
A novel bis(indolyl)methane‐modified silica reinforced with multiwalled carbon nanotubes sorbent for solid‐phase extraction was designed and synthesized by chemical immobilization of nitro‐substituted 3,3′‐bis(indolyl)methane on silica modified with multiwalled carbon nanotubes. Coupled with high‐performance liquid chromatography analysis, the extraction properties of the sorbent were evaluated for flavonoids and aromatic organic acid compounds. Under optimum conditions, the sorbent can simultaneously extract five flavonoids and two aromatic organic acid preservatives in aqueous solutions in a single‐step solid‐phase extraction procedure. Wide linear ranges were obtained with correlation coefficients (R2) ranging from 0.9843 to 0.9976, and the limits of detection were in the range of 0.5–5 μg/L for the compounds tested. Compared with the silica modified with multiwalled carbon nanotubes sorbent and the nitro‐substituted 3,3′‐bis(indolyl)methane‐modified silica sorbent, the developed sorbent exhibited higher extraction efficiency toward the selected analytes. The synergistic effect of nitro‐substituted 3,3′‐bis(indolyl)methane and multiwalled carbon nanotubes not only improved the surface‐to‐volume ratio but also enhanced multiple intermolecular interactions, such as hydrogen bonds, π–π, and hydrophobic interactions, between the new sorbent and the selected analytes. The as‐established solid‐phase extraction with high‐performance liquid chromatography and diode array detection method was successfully applied to the simultaneous determination of flavonoids and aromatic organic acid preservatives in grape juices with recoveries ranging from 83.9 to 112% for all the selected analytes.  相似文献   

4.
In this work, a polypyrrole/multiwalled carbon nanotubes composite decorated with Fe3O4 nanoparticles was chemically synthesized and applied as a novel adsorbent for the extraction of methocarbamol from human plasma. Electrospray ionization ion mobility spectrometry was used for the determination of the analyte. The properties of the magnetic‐modified adsorbent were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform IR spectroscopy, and X‐ray diffraction. The effects of experimental parameters on the extraction efficiency of the sorbent were investigated. Under the optimized conditions, the linear dynamic range was found to be 2–150 ng/mL with the detection limit of 0.9 ng/mL. The relative standard deviation was 5.3% for three replicate measurements of methocarbamol in plasma sample. The extraction efficiency of the sorbent for the determination of different drugs with various polarities was also compared to that of Fe3O4‐polypyrrole and Fe3O4‐multiwalled carbon nanotubes sorbents. Finally, the method was used for the determination of methocarbamol in blood samples.  相似文献   

5.
In this study, we combine magnetic solid phase extraction (MSPE), with the screen-printed carbon electrode (SPCE) modified by a molecular imprinted polymer (MIP) for sensitive and selective extraction and electrochemical determination of Rhodamine B in food samples. A magnetic solid phase extraction (MSPE) was carried out using magnetic poly(styrene-co-divinylbenzene) (PS-DVB) and magnetic nanoparticles (MNPs) synthetized on the surface of multiwalled carbon nanotubes (MWCNTs). An MIP was prepared on the surface of MWCNTs in the presence of titanium oxide nanoparticles (TiO2NPs) modifying the SPCE for the rapid electrochemical detection of Rhodamine B. The MIPs synthesis was optimized by varying the activated titanium oxide (TiO2) and multiwalled carbon nanotubes (MWCNTs) amounts. The MSPE and electrochemical detection conditions were optimized as well. The present method exhibited good selectivity, high sensitivity, and good reproducibility towards the determination of Rhodamine B, making it a suitable method for the determination of Rhodamine B in food samples.  相似文献   

6.
聚丙烯酸功能化多壁碳纳米管   总被引:1,自引:0,他引:1  
Covalent functionalization of multiwalled carbon nanotubes (MWNT) with poly(acrylic acid) has been successfully achieved via grafting of poly(acryloyl chloride) on nanotube surface by esterification reaction of acyl chloride-bound polymer with hydroxyl functional groups present on acid-oxidized MWNT and hydrolysis of polymer attached to nanotubes. Polymer-functionalized MWNT could possess remarkably high solubility in water, and their aqueous solution was very stable without any observable black deposit for a long time. Characterizations of such functionalized MWNT samples using Fourier transform infrared spectrometer, transmission electron microscopy and nuclear magnetic resonance techniques indicated that poly(acrylic acid) was covalently attached to the surface of MWNT.  相似文献   

7.
Zhou Q  Xiao J  Wang W  Liu G  Shi Q  Wang J 《Talanta》2006,68(4):1309-1315
Multiwalled carbon nanotubes, a new nanoscale material, has been gained many interests for use in various fields, and has exhibited exceptional merit as SPE absorbents for enrichment of environmental pollutants. This paper focused on the enriching power of atrazine and simazine, two important widely used triazine herbicides and described a novel and sensitive method for determination of these two herbicides based on SPE using multiwalled carbon nanotubes as solid phase absorbents followed by high performance liquid chromatography with diode array detector. Factors that maybe affect the enrichment efficiency of multiwalled carbon nanotubes such as the volume of eluent, sample flow rate, sample pH, and volume of the water samples were optimized. Under the optimal procedures, multiwalled carbon nanotubes as the absorbents have obtained excellent enrichment efficiency for atrazine and simazine. The detection limits of the atrazine and simazine were 33 and 9 ng l−1, respectively. The spiked recoveries of the two analytes were over the range of 82.6-103.7% in most cases. Good analytical performance was achieved from real-world water samples such as river water, reservoir water, tap water and wastewater after primary pretreatment with proposed method. All these experimental results indicated that the developed method could be used as an alternative for the routine analysis of atrazine and simazine in many real water samples.  相似文献   

8.
An analytical method based on dispersive solid‐phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass–mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4‐ to 48.7‐fold (theoretical enrichment factor was 50‐fold). The detection limits of pesticides were 0.01~0.77 μg/kg. The linear range was 0.005–0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high‐performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site.  相似文献   

9.
In this paper, multiwalled‐carbon‐nanotube‐based matrix solid‐phase dispersion coupled to HPLC with diode array detection was used to extract and determine honokiol and magnolol from Magnoliae Cortex. The extraction efficiency of the multiwalled‐carbon‐nanotube‐based matrix solid‐phase dispersion was studied and optimized as a function of the amount of dispersing sorbent, volume of elution solvent, and flow rate of elution solvent, with the aid of response surface methodology. An amount of 0.06 g of carboxyl‐modified multiwalled carbon nanotubes and 1.5 mL of methanol at a flow rate of 1.1 mL/min were selected. The method obtained good linearity (r2 > 0.9992) and precision (RSD < 4.7%) for honokiol and magnolol, with limits of detection of 0.045 and 0.087 μg/mL, respectively. The recoveries obtained from analyzing in triplicate spiked samples were determined to be from 90.23 to 101.10% and the RSDs from 3.5 to 4.8%. The proposed method that required less samples and reagents was simpler and faster than Soxhlet and maceration extraction methods. The optimized method was applied for analyzing five real samples collected from different cultivated areas.  相似文献   

10.
11.
纪雪峰  李爽  吴阁格  赵琳  马继平 《色谱》2021,39(8):896-904
离子型金属有机骨架材料(iMOFs)对离子型化合物具有良好的选择吸附性,利用水热法合成了一种金属有机骨架材料MIL-101-NH2,以聚偏二氟乙烯(PVDF)为交联剂将其制备成混合基质膜(MMM),然后用三氟甲烷磺酸甲酯进行季胺基功能化改性,最终得到阳离子型金属有机骨架膜材料MIL-101-$NMe_{3}^{+}$-PVDF MMM,采用分散固相萃取方式富集水中的苯氧羧酸类除草剂,建立了一种基于阳离子型MOF混合基质膜的分散固相萃取-超高效液相色谱-串联质谱(UPLC-MS/MS)测定水体中7种苯氧羧酸类除草剂的分析方法。通过傅里叶变换红外光谱和扫描电子显微镜对制备的混合基质膜进行表征,结果表明季胺基功能化改性是成功的,得到了阳离子型MOF膜。对影响萃取效果的主要因素(吸附剂用量、水样pH值、萃取时间、洗脱剂种类、洗脱剂体积及洗脱时间)进行了优化,确定了最佳萃取条件。以0.01%(v/v)甲酸水溶液和乙腈作为流动相进行梯度洗脱,目标化合物在ACQUITY UPLC BEH C18色谱柱(100 mm×2.1 mm, 1.7 μm)上分离,在电喷雾电离源、负离子模式下进行多反应监测(MRM),外标法定量。结果表明,7种苯氧羧酸类除草剂在各自范围内线性关系良好,线性相关系数均大于0.997,方法的检出限(LOD)和定量限(LOQ)分别为0.00010~0.00090 μg/L和0.00033~0.00300 μg/L。在0.005、0.05和0.2 μg/L 3个加标水平下进行加标回收率试验,7种待测物的平均回收率为80%~102%,日内、日间相对标准偏差分别为1.4%~9.4%和4.2%~12.6%。该方法操作简单、快速,灵敏度高,适用于环境水体中7种苯氧羧酸类除草剂的检测。  相似文献   

12.
A novel and effective magnetic multiwalled carbon nanotube composite for the separation and enrichment of polychlorinated biphenyls was developed. Fe3O4@SiO2 core–shell structured nanoparticles were first synthesized, then the poly(sodium 4‐styrenesulfonate) was laid on its surface to prepare the polyanionic magnetic nanoparticles. The above materials were then grafted with polycationic multiwalled carbon nanotubes, which were modified by polydiallyl dimethyl ammonium chloride through the layer‐by‐layer self‐assembly approach. Its performance was tested by magnetic solid‐phase extraction and gas chromatography with mass spectrometry for the determination of six kinds of indicator polychlorinated biphenyls in water samples. Under optimal conditions, the spiked recoveries of several real samples for six kinds of polychlorinated biphenyls (PCB28, PCB52, PCB101, PCB138, PCB153, PCB180) were in the range of 73.4–99.5% with relative standard deviations varying from 1.5 to 8.4%. All target compounds showed good linearities in the tested range with correlation coefficients higher than 0.9993. The limits of quantification for six kinds of indicator polychlorinated biphenyls were between 0.018 and 0.039 ng/mL. The proposed method was successfully applied to analyze polychlorinated biphenyls in real water samples. Satisfactory results were obtained using the effective magnetic absorbent.  相似文献   

13.
In this work, multiwalled carbon nanotubes were reacted with N‐[3‐(triet‐hoxysilyl)propyl]isonicotinamide to prepare pyridine‐functionalized carbon nanotubes. This novel sorbent was characterized by infrared spectroscopy, thermal and elemental analysis, and scanning electron microscopy. Functionalized carbon nanotubes were applied for the preconcentration and determination of copper ions using flame atomic absorption spectrometry. Various parameters such as sample pH, flow rate, eluent type and concentration, and its volume were optimized. Under optimal experimental conditions, the limit of detection, the relative standard deviation, and the recovery of the method were 0.65 ng/mL, 3.2% and 99.4%, respectively. After validating the method using standard reference materials, the new sorbent was applied for the extraction and determination of trace copper(II) ions in fruit samples.  相似文献   

14.
In this work, magnetic multiwalled carbon nanotubes were synthesized through a facile hydrothermal process, and then successfully used as magnetic solid-phase extraction sorbents for the determination of p-hydroxybenzoates in beverage. The prepared magnetic multiwalled carbon nanotubes presented both satisfactory superparamagnetism and strong capacity of absorption, with magnetic Fe(3)O(4) beads of 200 nm average diameters decorated at either ends of the tubes. The hybrid nanocomposites showed a high efficiency in the extraction and enrichment of p-hydroxybenzoates via π-π stacking of targeted molecules onto the polyaromatic composed surface of multiwalled carbon nanotubes, which entitled them promising magnetic solid-phase extraction sorbents for p-hydroxybenzoates at trace level from complex drink samples. By using an external magnetic field, p-hydroxybenzoates adsorbed on magnetic multiwalled carbon nanotubes could be rapidly isolated in only 30 s, and subsequently analyzed by liquid chromatography-diode array detector after elution with organic solvents. Extraction conditions such as eluting solvent, the amounts of magnetic sorbents added, pH values, adsorption and desorption time were investigated and optimized to achieve the best effect. Method validations including linearity, detection limit, and precision were also studied. The linearities were in the wide range of 0.05-500 μg/mL with correlation coefficients higher than 0.9983 for all p-hydroxybenzoates. The limits of detection were less than 20 ng/mL. Acceptable RSDs were achieved within 5-8% for all analytes. The results indicated that the proposed method based on magnetic multiwalled carbon nanotubes as magnetic solid-phase extraction absorbents was rapid, efficient, and convenient for the analysis of the targeted compounds of p-hydroxybenzoates in beverage sample.  相似文献   

15.
A novel adsorbent made of polydopamine‐functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core–shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples.  相似文献   

16.
A new method is successfully developed for the separation and determination of a very low amount of tramadol in urine using functionalized multiwalled carbon nanotubes/flower‐shaped zinc oxide before solid‐phase microextraction combined with gas chromatography. Under ultrasonic agitation, a sol of multiwalled carbon nanotubes and flower‐shaped zinc oxide were forced into and trapped within the pore structure of the polypropylene and the sol solution immobilized into the hollow fiber. Flower‐shaped zinc oxide was synthesized and characterized by Fourier transform infrared spectroscopy. The morphology of the fabricated solid‐phase microextraction surface was investigated by scanning electron microscopy and X‐ray diffraction. The parameters affecting the extraction efficiencies were investigated and optimized. Under the optimized conditions, the method shows linearity in a wide range of 0.12–7680 ng/mL, and a low detection limit (S/N = 3) of 0.03 ng/mL. The precision of the method was determined and a relative standard deviation of 3.87% was obtained. This method was successfully applied for the separation and determination of tramadol in urine samples. The relative recovery percentage obtained for the spiked urine sample at 1000 ng/mL was 94.2%.  相似文献   

17.
We report on the fabrication of a thin‐film composite for the extraction of bisphenol A from aqueous solutions. Nylon‐6, C18 particles, and polyethylene glycol were used to prepare the thin film sorbent. Bisphenol A was used as a model compound to evaluate the extraction efficiency of the sorbent. High‐performance liquid chromatography with UV detection was used for the analysis. The extraction yield of the sorbent was compared with other thin films fabricated using different sorbents including nanoclay, LiChrolut EN, and multiwalled carbon nanotubes. Experimental parameters affecting the extraction performance (extraction time, desorption condition, sample stirring, and ionic strength of the sample solution) were investigated. The detection limit and the dynamic range of the method were 0.05 and 0.15–50 μg/L, respectively. The relative standard deviation of the method at two concentration levels (0.5 and 20 μg/L) was less than 7.2%. Finally, a polycarbonate baby bottle, river water, and wastewater samples were analyzed by the method.  相似文献   

18.
A novel and simple supported ionic‐liquid‐based solid‐phase extraction method for the determination of triazine herbicides in rice was developed. Glass slides were functionalized by an ionic liquid, 1‐carboxyethyl‐3‐methylimidazolium chloride, and were used for the simultaneous extraction of seven triazine herbicides in rice samples. The effects of the type of extraction solvent, the extraction time, the type and volume of loading solvent, and the type of eluting solvent on the extraction efficiency were investigated and optimized. Under the optimum operation conditions, the limits of detection for seven triazine herbicides in rice samples obtained by high‐performance liquid chromatography were 3.16–5.42 ng/g, which were lower than the maximum residue levels established by various organizations. The linear correlation coefficients were higher than 0.9975 in the concentration range of 0.015–1.08 μg/g for the seven triazine herbicides. The recoveries of the seven triazine herbicides at the two concentration levels of 0.15 and 0.45 μg/g are between 82.47 and 104.21%, with relative standard deviations of 0.69–9.19%. The intra‐ and inter‐day (n = 5) precisions for all triazine herbicides at the spiked level of 0.30 μg/g were 1.72–11.71%.  相似文献   

19.
In this paper, a new ionic‐liquid‐functionalized magnetic material was prepared based on the immobilization of an ionic liquid on silica magnetic particles that could be successfully used as an adsorbent for the magnetic SPE of five sulfonylurea herbicides (bensulfuron‐methyl, prosulfuron, pyrazosulfuron‐ethyl, chlorimuron‐ethyl and triflusulfuron‐methyl) from environmental water samples. The main parameters affecting the extraction efficiency such as desorption conditions, sample pH, extraction time and so on, were optimized using the Taguchi method. Good linearities were obtained with correlation coefficients ranging from 0.9992 to 0.9999 in the concentration range of 0.1–50 μg L?1 and the LODs were 0.053–0.091 μg L?1. Under the optimum conditions, the enrichment factors of the method were 1155–1380 and the recoveries ranged from 77.8 to 104.4%. The proposed method was reliable and could be applied to the residue analysis of sulfonylurea herbicides in environmental water samples (tap, reservoir and river).  相似文献   

20.
The determination of 15 pyrethroids in soil and water samples was carried out by gas chromatography with mass spectrometry. Compounds were extracted from the soil samples (4 g) using solid–liquid extraction and then salting‐out assisted liquid–liquid extraction. The acetonitrile phase obtained (0.8 mL) was used as a dispersant solvent, to which 75 μL of chloroform was added as an extractant solvent, submitting the mixture to dispersive liquid–liquid microextraction. For the analysis of water samples (40 mL), magnetic solid‐phase extraction was performed using nanocomposites of magnetic nanoparticles and multiwalled carbon nanotubes as sorbent material (10 mg). The mixture was shaken for 45 min at room temperature before separation with a magnet and desorption with 3 mL of acetone using ultrasounds for 5 min. The solvent was evaporated and reconstituted with 100 μL acetonitrile before injection. Matrix‐matched calibration is recommended for quantification of soil samples, while water samples can be quantified by standards calibration. The limits of detection were in the range of 0.03–0.5 ng/g (soil) and 0.09–0.24 ng/mL (water), depending on the analyte. The analyzed environmental samples did not contain the studied pyrethroids, at least above the corresponding limits of detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号