首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc oxide nanoparticles have recently been used as effective adsorbent materials for sample pretreatment in analytical chemistry because of their excellent properties, such as high specific surface area, high effective porosity, non‐toxicity, and ease of fabrication. In this study, the zinc oxide nanoparticles functionalized by an ionic liquid, 1‐carboxyethyl‐3‐methylimidazolium chloride, were fabricated and used as the adsorbent for the solid phase extraction of five triazine herbicides in corn for the first time. High‐performance liquid chromatography was employed for the determination of these triazine herbicides. Several experimental parameters affecting the extraction efficiency were investigated, including the volume of extraction solvent, the extraction time, the type of extraction solvent and elution solvent, the amount of absorbent, and the volume of elution solvent. By using the proposed method, low limits of detection and quantification for all the five triazine herbicides were obtained between 0.71–1.08 and 2.67–3.64 ng/g, respectively. Recoveries of the proposed method range from 89.05 to 100.33% with intra‐ and inter‐day relative standard deviations lower than 8.45%. The calibration curves are linear in the concentration range of 0.005–1.00 μg/g with the correlation coefficient higher than 0.9954.  相似文献   

2.
A novel microextraction method, termed microwave‐assisted ionic liquid/ionic liquid dispersive liquid–liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high‐performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1‐hexyl‐3‐methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1‐hexyl‐3‐methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1‐butyl‐3‐methylimidazolium tetrafluoroborate. In addition, an ion‐pairing agent (NH4PF6) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00–250.00 μg/L, with the correlation coefficients of 0.9982–0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7–105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples.  相似文献   

3.
A rapid, efficient, and new solvent terminated dispersive liquid–liquid microextraction technique coupled with HPLC was developed for selective extraction and analysis of s‐triazine herbicides from environmental water samples. Important parameters influencing the extraction process including type and volume of extraction and disperser solvent, extraction time, sample pH, ionic strength, and extraction temperature were successfully optimized. Under the optimal conditions, there are excellent linear relationships between the analytical results and concentration in the range of 10–400 mg/L for atrazine, propazine, prometryn, and terbutryn. LOD and LOQ ranged from 0.60 to 2.33 μg/L and 2.0 to 7.7 μg/L, respectively. Performance of the analytical technique was evaluated by carrying out the repeatability and reproducibility analyses that were ranged from 2.86 to 5.66% and 4.64 to 5.89% for 100 μg/L of each target analyte, respectively. The proposed method has been successfully applied to the analysis of real water samples and acceptable relative recoveries over the range of 65.93–101.46%, with RSDs ≤ 8.80%, were obtained. The overall results have been compared with the literature values. Thus, the method developed could efficiently be used for selective extraction of the target analytes from complex matrices, particularly environmental waters.  相似文献   

4.
The magnetic metal‐organic framework MIL‐101(Cr) material‐based solid‐phase extraction method coupled with high‐performance liquid chromatography and tandem mass spectrometry was applied to extract seven triazine herbicides in rices. Fe3O4/MIL‐101(Cr) was synthesized using reduction‐precipitation method, in which steps including pre‐synthesis and modification of Fe3O4 nanoparticles were by‐passed. Various parameters including extraction solvent type and volume, ultrasonic extraction time, amount of Fe3O4/MIL‐101(Cr) microspheres, adsorption time, desorption volume and time were investigated. Under optimal conditions, the proposed method had the limit of detection (S/N = 3) and the limit of quantification (S/N = 10) of 1.08–18.10 and 3.60–60.20 pg/g, respectively. Relative standard deviations calculated for all herbicides with concentrations of 2 and 20 ng/g were in the range of 0.5 to 13% (n = 3). In addition, at the two above‐mentioned concentrations, the method achieved relative recoveries percentages of 79.3 to 116.7% when applied to determine the triazine herbicides in real samples spiked. This rapid, green, non‐polluting, pre‐concentrated extraction method was successfully developed and applied to analyze herbicides in rice samples.  相似文献   

5.
Ionic liquids immobilized on magnetic nanoparticles were prepared by an efficient microwave‐assisted synthesis method, and the properties of the ionic liquids were tuned based on the aromatic functional modification of its anion through a simple metathesis reaction. The novel as‐synthesized magnetic materials were characterized by various instrumental techniques. The magnetic nanoparticles have been utilized as adsorbents for the extraction of four sulfonylurea herbicides in tea samples, in combination with high‐performance liquid chromatography analysis. Significant extraction parameters, including type and volume of desorption solvent, extraction time, amount of adsorbent, and ionic strength were investigated. Under the optimum conditions, good linearity was obtained in the concentration range of 1–150 μg/L for metsulfuron‐methyl and bensulfuron‐methyl, and 3–150 μg/L for sulfometuron‐methyl and chlorimuron‐ethyl, with correlation coefficients R2 > 0.9987. Low limits of detection were obtained ranging from 0.13 to 0.81 μg/L. The relative standard deviations were 1.8–3.9%. Comparisons of extraction efficiency with conventional solid‐phase extraction equipped with a commercial C18 cartridge were performed. Results indicated that magnetic solid‐phase extraction is simple, time‐saving, efficient and inexpensive with the reusability of adsorbents. The proposed method has been successfully used to determine sulfonylurea herbicides from tea samples with satisfactory recoveries of 80.5–104.2%.  相似文献   

6.
Microwave‐assisted ionic‐liquid‐impregnated resin solid–liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic‐liquid‐impregnated resin was prepared by immobilizing 1‐hexyl‐3‐methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box–Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples.  相似文献   

7.
A dispersive liquid–liquid microextraction method using a lighter‐than‐water phosphonium‐based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium‐based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl‐(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter‐than‐water phosphonium‐based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples.  相似文献   

8.
Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber‐coating material for the solid‐phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene‐coated fiber coupled with high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05‐0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0 ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene‐coated fiber showed higher extraction efficiency.  相似文献   

9.
Novel poly(ionic liquids) were synthesized and immobilized on prepared magnetic nanoparticles, which were used to extract pesticides from fruit and vegetable samples by dispersive solid‐phase extraction prior to high‐performance liquid chromatography analysis. Compared with monomeric ionic liquids, poly(ionic liquids) have a larger effective contact area and higher viscosity, so they can achieve higher extraction efficiency and be used repeatedly without a decrease in analyte recovery. The immobilized poly(ionic liquids) were rapidly separated from the sample matrix, providing a simple approach for sample pretreatment. The nature and volume of the desorption solvent and amount of poly(ionic liquid)‐modified magnetic material were optimized for the extraction process. Under optimum conditions, calibration curves were linear (R2 > 0.9988) for pesticide concentrations in the range of 0.100–10.000 μg/L. The relative standard deviations for repeated determinations of the four analytes were 2.29–3.31%. The limits of detection and quantification were 0.29–0.88 and 0.97–2.93 μg/L, respectively. Our results demonstrate that the developed poly(ionic liquid)‐modified material is an effective absorbent to extract pesticides from fruit and vegetable samples.  相似文献   

10.
A novel manual‐shaking‐ and ultrasound‐assisted surfactant‐enhanced emulsification microextraction method was developed for the determination of three fungicides in juice samples. In this method, the ionic liquid, 1‐ethyl‐3‐methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, instead of a volatile organic solvent was used as the extraction solvent. The surfactant, NP‐10, was used as an emulsifier to enhance the dispersion of the water‐immiscible ionic liquid into an aqueous phase, which accelerated the mass transfer of the analytes. Organic dispersive solvent typically required in common dispersive liquid–liquid microextraction methods was not necessary. In addition, manual shaking for 15 s before ultrasound to preliminarily mix the extraction solvent and the aqueous sample could greatly shorten the time for dispersing the ionic liquid into aqueous solution by ultrasound irradiation. Several experimental parameters affecting the extraction efficiency, including type and volume of extraction solvent, type and concentration of surfactant, extraction time, and pH, were optimized. Under the optimized conditions, good linearity with the correlation coefficients (γ) higher than 0.9986 and high sensitivity with the limit of detection ranging from 0.4 to 1.6 μg/L were obtained. The average recoveries ranged from 61.4 to 86.0% for spiked juice, with relative standard deviations from 1.8 to 9.7%. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of the target fungicides in juice samples.  相似文献   

11.
A binary–solvent–based ionic–liquid–assisted surfactant‐enhanced emulsification microextraction method was developed for the separation/preconcentration and determination of four fungicides (pyrimethanil, fludioxonil, cyprodynil, pyraclostrobin) in apple juice and apple vinegar. A nonchlorinated solvent amyl acetate, which has a lower density than water, was used as the extraction solvent, and an ionic liquid 1‐hexyl‐3‐methylimidazolium hexafluorophosphate, which has a high density and low toxicity, was used as a secondary solvent mixed with the extraction solvent. After centrifugation, the binary solvent drop with a relatively high density was deposited on the bottom of the tube. Some parameters influencing the extraction efficiency of analytes such as type of extraction solvent, ratio of ionic liquid, volume of mixed solvent, type and concentration of surfactant, sample pH, NaCl concentration, and vortex time were investigated and optimized. Under the optimized conditions, the proposed method provided a good linearity in the range of 5–200 μg/L. The limits of quantification of the method were in the range of 2–5 μg/L. The relative standard deviations for interday assays were 1.7–11.9%. The method was applied to the determination of pyrimethanil, fludioxonil, cyprodynil, and pyraclostrobin in apple juice and apple vinegar samples, and the accuracy was evaluated through recovery experiments.  相似文献   

12.
A rapid and simple sample preparation method was developed for simultaneous determination of three triazine herbicides in honey samples. The selected herbicides were extracted from honey samples by ionic liquid dispersive liquid–liquid microextraction, separated on a C18 column (250 mm × 4.6 mm id, 5 μm) using acetonitrile and H2O as the mobile phase with gradient elution, and then detected by high‐performance liquid chromatography. The parameters, such as the type and volume of the extraction and disperser solvent, ion strength, pH, extraction time, and centrifuge time were optimized in order to provide the excellent extraction performance. Good linearity was showed for all the target herbicides over the tested concentration range with correlation coefficient higher than 0.994. Three spiked levels (0.005, 0.05, 0.10 mg/kg) were applied for determination of the recoveries of the targets in honey samples in the range of 80–103% with relative standard deviations not larger than 10.6%. The limits of quantification for the analytes ranged between 1.5 and 4.0 μg/kg. The developed method was applied for determination of the target compounds residues in real samples.  相似文献   

13.
Dispersive liquid–liquid microextraction coupled with high‐performance liquid chromatography‐ultraviolet detection as a fast and inexpensive technique was applied to the simultaneous extraction and determination of traces of three common herbicides, 2,4‐D, alachlor and atrazine, in aqueous samples. The critical experimental parameters, including type of the extraction and disperser solvents as well as their volumes, sample pH, salt addition, extraction time and centrifuging time, and speed were investigated and optimized. Under the optimum conditions, the calibration graphs found to be linear in the range of 0.3–200 μg/L with limits of detection in the range of 0.05–0.1 μg/L. The relative standard deviations were in the range of 4.5–6.2% (n = 7). The relative recoveries of well, tap, and river water samples which have been spiked with different levels of herbicides were 92.0–107.0, 82.0–104.0, and 82.0–86.0%, respectively.  相似文献   

14.
A novel dispersive liquid–liquid microextraction (DLLME) method followed by HPLC analysis, termed sequential DLLME, was developed for the preconcentration and determination of aryloxyphenoxy‐propionate herbicides (i.e. haloxyfop‐R‐methyl, cyhalofop‐butyl, fenoxaprop‐P‐ethyl, and fluazifop‐P‐butyl) in aqueous samples. The method is based on the combination of ultrasound‐assisted DLLME with in situ ionic liquid (IL) DLLME into one extraction procedure and achieved better performance than widely used DLLME procedures. Chlorobenzene was used as the extraction solvent during the first extraction. Hydrophilic IL 1‐octyl‐3‐methylimidazolium chloride was used as a dispersive solvent during the first extraction and as an extraction solvent during the second extraction after an in situ chloride exchange by bis[(trifluoromethane)sulfonyl]imide. Several experimental parameters affecting the extraction efficiency were studied and optimized with the design of experiments using MINITAB® 16 software. Under the optimized conditions, the extractions resulted in analyte recoveries of 78–91%. The correlation coefficients of the calibration curves ranged from 0.9994 to 0.9997 at concentrations of 10–300, 15–300, and 20–300 μg L?1. The relative SDs (n = 5) ranged from 2.9 to 5.4%. The LODs for the four herbicides were between 1.50 and 6.12 μg L?1.  相似文献   

15.
A novel in‐tube solid‐phase microextraction method based on a graphene oxide coated column was developed for the determination of triazines in waters. This column was prepared by the covalent modification of monolayer graphene oxide sheets onto the inner wall of a fused‐silica capillary. Scanning electron microscopy showed that the thickness of the graphene oxide coating was ~30 nm, with a porous, wrinkled membrane‐like structure. Its performance was evaluated through the extraction of triazines in water. Results showed that the coating was stable for at least 100 replicate extractions, and variety of multi‐columns was less than 10%. Flow rate, loading volume, pH, and ionic strength of samples played an important effect on the extraction. The high extraction efficiency was mainly attributed to π–π stacking and hydrogen bonding interactions. The in‐tube solid‐phase microextraction was used in the determination of triazines with liquid chromatography and tandem mass spectrometry, and the detection limits were 0.0005–0.005 μg/L for five triazine compounds. Further, the method was applied to the analysis of triazine herbicides in real samples including tap water, sea water, and river water, and the recoveries were 82.8–112.0, 85.4–110.5, and 81.6–105.9%, respectively, with RSDs of 2.7–7.1%.  相似文献   

16.
A simple, environmentally friendly, and sensitive dispersive liquid–liquid microextraction based on solidification of floating organic droplet for the extraction of four acidic nonsteroidal anti‐inflammatory drugs (ketoprofen, naproxen, ibuprofen, and diclofenac) from wastewater samples subsequent by high‐performance liquid chromatography analysis was developed. The influence of extraction parameters such as pH, the effect of solution ionic strength, type of extraction solvent, disperser solvent, and extraction solvent volume were studied. High enrichment factors (283–302) were obtained through the developed method. The method provides good linearity (r > 0.999) in a concentration range of 1–100 μg/L, good intra‐ and inter‐day precision (relative standard deviation < 7%) and low limits of quantification. The relative recoveries of the selected compounds were situated over 80% both in synthetic and real water samples. The developed method has been successfully applied for the analysis of the selected compounds in wastewater samples.  相似文献   

17.
A novel low‐density solvent‐based vortex‐assisted surfactant‐enhanced‐emulsification liquid–liquid microextraction with the solidification of floating organic droplet method coupled with high‐performance liquid chromatography was developed for the determination of 3,5,6‐trichloro‐2‐pyridinol, phoxim and chlorpyrifos‐methyl in water samples. In this method, the addition of a surfactant could enhance the speed of the mass transfer from the sample solution into the extraction solvent. The extraction solvent could be dispersed into the aqueous by the vortex process. The main parameters affecting the extraction efficiency were investigated and the optimum conditions were established as follows: 80 μL 1‐undecanol as extraction solvent, 0.2 mmol/L of Triton X‐114 selected as the surfactant, the vortex time was fixed at 60 s with the vortex agitator set at 3000 rpm, the concentration of acetic acid in sample solution was 0.4% v/v and 1.0 g addition of NaCl. Under the optimum conditions, the enrichment factors were from 172 to 186 for the three analytes. The linear ranges were from 0.5 to 500 μg/L with a coefficient of determination (r2) of between 0.9991 and 0.9995. Limits of detections were varied between 0.05 and 0.12 μg/L. The relative standard deviations (n = 6) ranged from 0.26 to 2.62%.  相似文献   

18.
A new multiple monolithic fiber solid‐phase microextraction using a polydopamine‐based monolith as the extraction medium is proposed. The monolith was synthesized by facile in situ copolymerization of N‐methacryldopamine and dual cross‐linkers (divinylbenzene/ethylenedimethacrylate) in the presence of N ,N‐dimethylformamide. The effect of the contents of N‐methacryldopamine and porogen in the polymerization mixture on the extraction performance was investigated thoroughly. A series of characterization studies was performed to validate the structure and properties of the monolith. The prepared multiple monolithic fibers were used for the extraction of triazine herbicides in environmental water samples. After the optimization of the extraction parameters, a convenient, sensitive, cost‐effective, and environmentally friendly method for the determination of trace triazine herbicides in water samples was developed by coupling multiple monolithic fibers solid‐phase microextraction with high‐performance liquid chromatography and diode array detection. The results indicated that the limits of detection and quantification for the target compounds were 0.031–0.14 and 0.10–0.45 μg/L, respectively. Good precision and reproducibility were obtained with the relative standard deviations below 10%. The developed method was applied to the analysis of the triazine herbicides in different water samples (lake, river, and farmland waters). The recoveries of the method were in the range between 79.6 and 117%.  相似文献   

19.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

20.
A novel, simple, and rapid vortex‐assisted hollow‐fiber liquid‐phase microextraction method was developed for the simultaneous extraction of albendazole and triclabendazole from various matrices before their determination by high‐performance liquid chromatography with fluorescence detection. Several factors influencing the microextraction efficiency including sample pH, nature and volume of extraction solvent, ionic strength, vortex time, and sample volume were investigated and optimized. Under the optimal conditions, the limits of detection were 0.08 and 0.12 μg/L for albendazole and triclabendazole, respectively. The calibration curves were linear in the concentration ranges of 0.3–50.0 and 0.4–50.0 μg/L with the coefficients of determination of 0.9999 and 0.9995 for albendazole and triclabendazole, respectively. The interday and intraday relative standard deviations for albendazole and triclabendazole at three concentration levels (1.0, 10.0, and 30.0 μg/L) were in the range of 6.0–11.0 and 5.0–7.9%, respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, milk, honey, and urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号