首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Reactions of divalent Zn‐Hg metal ions with 1,3‐imidazolidine‐2‐thione (imdtH2) in 1 : 2 molar ratio have formed monomeric complexes, [Zn(η1‐S‐imdtH2)2(OAc)2] ( 1 ), [Cd((η1‐SimdtH2)2I2] ( 2 ), [Cd(η1‐S‐imdtH2)2Br2] ( 3 ), and [Hg(η1‐S‐imdtH2)2I2] ( 4 ). Complexes 1 – 4 , have been characterized by elemental analysis (C, H, N), spectroscopy (IR, 1H, NMR) and x‐ray crystallography ( 1 ‐ 4 ). Hydrogen bonding between oxygen of acetate and imino hydrogen of ligand, {N(2)–H(2C)···O(2)#} in 1 , ring CH and imino hydrogen, {C(2A)–H(2A)···Br(2)#} in 3 have formed H‐bonded dimers. Similarly, the interactions between molecular units of complexes 2 and 4 have yielded 2D polymers. The polymerization occurs via intermolecular interactions between thione sulfur and imino hydrogen, {N(2)–H(2)···S(1)#}, imino hydrogen and the iodine atom, {NH(1)···I(2)#} in 2 and imino hydrogen – iodine atom {N(2A)–H(2A)···I(2)} and I···I interaction in 4 . Crystal data: [Zn(η1‐S‐imdtH2)2(OAc)2] ( 1 ), C10H18N4O4S2Zn, orthorhombic, Pbcn, a = 9.3854(7) Å, b = 12.4647(10) Å, c = 13.2263(11) Å; V = 1547.3(2) Å3, Z = 4, R = 0.0280 [Cd((η1‐S‐imdtH2)2I2] ( 2 ), C6H12CdI2N4S2, orthorhombic, Pnma, a = 13.8487(10) Å, b = 14.4232(11) Å, c = 7.0659(5) Å; Z = 4, V = 1411.36(18) Å3, R = 0.0186.  相似文献   

2.
Copper(I) halides with triphenyl phosphine and imidaozlidine‐2‐thiones (L ‐NMe, L ‐NEt, and L ‐NPh) in acetonitrile/methanol (or dichloromethane) yielded copper(I) mixed‐ligand complexes: mononuclear, namely, [CuCl(κ1‐S‐L ‐NMe)(PPh3)2] ( 1 ), [CuBr(κ1‐S‐L ‐NMe)(PPh3)2] ( 2 ), [CuBr(κ1‐S‐L ‐NEt)(PPh3)2] ( 5 ), [CuI(κ1‐S‐L ‐NEt)(PPh3)2] ( 6 ), [CuCl(κ1‐S‐L ‐NPh)(PPh3)2] ( 7 ), and [CuBr(κ1‐S‐L ‐NPh)(PPh3)2] ( 8 ), and dinuclear, [Cu21‐I)2(μ‐S‐L ‐NMe)2(PPh3)2] ( 3 ) and [Cu2(μ‐Cl)21‐S‐L ‐NEt)2(PPh3)2] ( 4 ). All complexes were characterized with analytical data, IR and NMR spectroscopy, and X‐ray crystallography. Complexes 2 – 4 , 7 , and 8 each formed crystals in the triclinic system with P$\bar{1}$ space group, whereas complexes 1 , 5 , and 6 crystallized in the monoclinic crystal system with space groups P21/c, C2/c, and P21/n, respectively. Complex 2 has shown two independent molecules, [(CuBr(κ1‐S‐L ‐NMe)(PPh3)2] and [CuBr(PPh3)2] in the unit cell. For X = Cl, the thio‐ligand bonded to metal as terminal in complex 4 , whereas for X = I it is sulfur‐bridged in complex 3 .  相似文献   

3.
(Acetonitrile‐1κN)[μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S][1H‐benzimidazole‐2(3H)‐thione‐2κS]bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)2(CH3CN)] or [Cu2(tsac)2(Sbim)2(CH3CN)] [tsac is thiosaccharinate and Sbim is 1H‐benzimidazole‐2(3H)‐thione], (I), is a new copper(I) compound that consists of a triply bridged dinuclear Cu—Cu unit. In the complex molecule, two tsac anions and one neutral Sbim ligand bind the metals. One anion bridges via the endocyclic N and exocyclic S atoms (μ‐S:N). The other anion and one of the mercaptobenzimidazole molecules bridge the metals through their exocyclic S atoms (μ‐S:S). The second Sbim ligand coordinates in a monodentate fashion (κS) to one Cu atom, while an acetonitrile molecule coordinates to the other Cu atom. The CuI—CuI distance [2.6286 (6) Å] can be considered a strong `cuprophilic' interaction. In the case of [μ‐1H‐benzimidazole‐2(3H)‐thione‐1:2κ2S:S]bis[1H‐benzimidazole‐2(3H)‐thione]‐1κS;2κS‐bis(μ‐1,1‐dioxo‐1λ6,2‐benzothiazole‐3‐thiolato)‐1:2κ2S3:N;1:2κ2S3:S3‐dicopper(I)(CuCu), [Cu2(C7H4NO2S2)2(C7H6N2S)3] or [Cu2(tsac)2(Sbim)3], (II), the acetonitrile molecule is substituted by an additional Sbim ligand, which binds one Cu atom via the exocylic S atom. In this case, the CuI—CuI distance is 2.6068 (11) Å.  相似文献   

4.
One μ‐alkoxo‐μ‐carboxylato bridged dinuclear copper(II) complex, [Cu2(L1)(μ‐C6H5CO2)] ( 1 )(H3L1 = 1,3‐bis(salicylideneamino)‐2‐propanol)), and two μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear copper(II) complexes, [Cu4(L1)2(μ‐C8H10O4)(DMF)2]·H2O ( 2 ) and [Cu4(L2)2(μ‐C5H6O4]·2H2O·2CH3CN ( 3 ) (H3L2 = 1,3‐bis(5‐bromo‐salicylideneamino)‐2‐propanol)) have been prepared and characterized. The single crystal X‐ray analysis shows that the structure of complex 1 is dimeric with two adjacent copper(II) atoms bridged by μ‐alkoxo‐μ‐carboxylato ligands where the Cu···Cu distances and Cu‐O(alkoxo)‐Cu angles are 3.5 11 Å and 132.8°, respectively. Complexes 2 and 3 consist of a μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear Cu(II) complex with mean Cu‐Cu distances and Cu‐O‐Cu angles of 3.092 Å and 104.2° for 2 and 3.486 Å and 129.9° for 3 , respectively. Magnetic measurements reveal that 1 is strong antiferromagnetically coupled with 2J =‐210 cm?1 while 2 and 3 exhibit ferromagnetic coupling with 2J = 126 cm?1 and 82 cm?1 (averaged), respectively. The 2J values of 1–3 are correlated to dihedral angles and the Cu‐O‐Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ) catalyzed by 1–3 was studied. Complexes 1–3 exhibit catecholase‐like active at above pH 8 and 25 °C for oxidation of 3,5‐di‐tert‐butylcatechol.  相似文献   

5.
The Hg atom in the title monomeric complex, di­chloro­bis(3‐imidazolium‐2‐thiol­ato‐S)­mercury(II), [HgCl2(C3H4N2S)2], is four‐coordinate having an irregular tetrahedral geometry composed of two Cl atoms [Hg—Cl 2.622 (2) and 2.663 (2) Å] and two thione S atoms [Hg—S 2.445 (2) and 2.462 (2) Å]. The monodentate thione ligand adopts a zwitterionic form and exists as the 3‐imidazolium‐2‐thiol­ate ion. The bond angle S1—Hg—S2 of 130.87 (8)° has the greatest deviation from ideal tetrahedral geometry. Intermolecular hydrogen bonds between two of the four N—H groups and one of the Cl atoms [3.232 (8) and 3.238 (7) Å] stabilize the crystal structure, while the other two N—H groups contribute through the formation of N—H?Cl intramolecular hydrogen bonds with the other Cl atom [3.121 (7) and 3.188 (7) Å].  相似文献   

6.
Ruthenium(II) Complexes containing pyrimidine‐2‐thiolate (pymS) and bis(diphenylphosphanyl)alkanes [Ph2P–(CH2)m–PPh2, m = 1, dppm; m = 2, dppe; m = 3, dppp; m = 4, dppb] are described. Reactions of [RuCl2L2] (L = dppm, dppp) and [Ru2Cl4L3] (L = dppb) with pyrimidine‐2‐thione (pymSH) in 1:2 molar ratio in dry benzene in the presence of Et3N base yielded the [Ru(pymS)2L] complexes (pymS = pyrimidine‐2‐thiolate; L = dppm ( 1 ); dppp ( 3 ); dppb ( 4 )). The complex [Ru(pymS)2(dppe)] ( 2 ) was indirectly prepared by the reaction of [Ru(pymS)2(PPh3)2] with dppe. These complexes were characterized using analytical data, IR, 1H, 13C, 31P NMR spectroscopy, and X‐ray crystallography (complex 3 ). The crystal structure of the analogous complex [Ru(pyS)2(dppm)] ( 5 ) with the ligand pyridine‐2‐thiolate (pyS) was also described. X‐ray crystallographic investigation of complex 3 has shown two four‐membered chelate rings (N, S donors) and one six‐membered ring (P, P donors) around the metal atom. Compound 5 provides the first example in which RuII has three four‐membered chelate rings: two made up by N, S donor ligands and one made up by P, P donor ligand. The arrangement around the metal atoms in each complex is distorted octahedral with cis:cis:trans:P, P:N, N:S, S dispositions of the donor atoms. The 31P NMR spectroscopic data revealed that the complexes are static in solution, except 2 , which showed the presence of more than one species.  相似文献   

7.
The SnCl4‐catalyzed reaction of (?)‐thiofenchone (=1,3,3‐trimethylbicyclo[2.2.1]heptane‐2‐thione; 10 ) with (R)‐2‐phenyloxirane ((R)‐ 11 ) in anhydrous CH2Cl2 at ?60° led to two spirocyclic, stereoisomeric 4‐phenyl‐1,3‐oxathiolanes 12 and 13 via a regioselective ring enlargement, in accordance with previously reported reactions of oxiranes with thioketones (Scheme 3). The structure and configuration of the major isomer 12 were determined by X‐ray crystallography. On the other hand, the reaction of 1‐methylpyrrolidine‐2‐thione ( 14a ) with (R)‐ 11 yielded stereoselectively (S)‐2‐phenylthiirane ((S)‐ 15 ) in 56% yield and 87–93% ee, together with 1‐methylpyrrolidin‐2‐one ( 14b ). This transformation occurs via an SN2‐type attack of the S‐atom at C(2) of the aryl‐substituted oxirane and, therefore, with inversion of the configuration (Scheme 4). The analogous reaction of 14a with (R)‐2‐{[(triphenylmethyl)oxy]methyl}oxirane ((R)‐ 16b ) led to the corresponding (R)‐configured thiirane (R)‐ 17b (Scheme 5); its structure and configuration were also determined by X‐ray crystallography. A mechanism via initial ring opening by attack at C(3) of the alkyl‐substituted oxirane, with retention of the configuration, and subsequent decomposition of the formed 1,3‐oxathiolane with inversion of the configuration is proposed (Scheme 5).  相似文献   

8.
Reaction of 1, 9‐dihydro‐purine‐6‐thione (puSH2) in presence of aqueous sodium hydroxide with PdCl2(PPh3)2 suspended in ethanol formed [Pd(κ2‐N7,S‐puS)(PPh3)2] ( 1 ). Similarly, complexes [Pd(κ2‐N7,S‐puS)(κ2‐P, P‐L‐L)] ( 2 – 4 ) {L‐L = dppm (m = 1) ( 2 ), dppp (m = 3) ( 3 ), dppb (m = 4) ( 4 )} were prepared using precursors the [PdCl2(L‐L)] {L‐L = Ph2P–(CH2)m–PPh2}. Reaction of puSH2 suspended in benzene with platinic acid, H2PtCl6, in ethanol in the presence of triethylamine followed by the addition of PPh3 yielded the complex [Pt(κ2‐N7,S‐puS)(PPh3)2] ( 5 ). Complexes [Pt(κ2‐N7,S‐puS)(κ2‐P, P‐L‐L)] ( 6 – 8 ) {L‐L = dppm ( 6 ), dppp ( 7 ), dppb ( 8 )} were prepared similarly. The 1, 9‐dihydro‐purine‐6‐thione acts as N7,S‐chelating dianion in compounds 1 – 8 . The reaction of copper(I) chloride [or copper(I) bromide] in acetonitrile with puSH2 and the addition of PPh3 in methanol yielded the same product, [Cu(κ2‐N7,S‐puSH)(PPh3)2] ( 9 ), in which the halogen atoms are removed by uninegative N, S‐chelating puSH anion. However, copper(I) iodide did not lose iodide and formed the tetrahedral complex, [CuI(κ1‐S‐puSH2)(PPh3)2] ( 10 ), in which the thio ligand is neutral. These complexes were characterized with the help of elemental analysis, NMR spectroscopy (1H, 31P), and single‐crystal X‐ray crystallography ( 3 , 7 , 8 , 9 , and 10 ).  相似文献   

9.
In the presence of Et3N, the reaction of 1, 3‐bis[(2‐chloro)benzene]triazene (HL) with CuCl or AgNO3 gives the triazenide complexes {Cu2(L)2} ( 1 ) and {Ag2(L)2} ( 2 ), respectively. The X‐ray crystal structures of both complexes were obtained. The metal–metal distances (Cu ··· Cu and Ag ··· Ag) are 2.4974(5) and 2.7208(5) Å, respectively.  相似文献   

10.
The blue tetranuclear CuII complexes {[Cu(bpy)(OH)]4Cl2}Cl2 · 6 H2O ( 1 ) and {[Cu(phen)(OH)]4(H2O)2}Cl4 · 4 H2O ( 2 ) were synthesized and characterized by single crystal X‐ray diffraction. ( 1 ): P 1 (no. 2), a = 9.240(1) Å, b = 10.366(2) Å, c = 12.973(2) Å, α = 85.76(1)°, β = 75.94(1)°, γ = 72.94(1)°, V = 1152.2(4) Å3, Z = 1; ( 2 ): P 1 (no. 2), a = 9.770(3) Å, b = 10.118(3) Å, c = 14.258(4) Å, α = 83.72(2)°, β = 70.31(1)°, γ = 70.63(1)°, V = 1252.0(9) Å3, Z = 1. The building units are centrosymmetric tetranuclear {[Cu(bpy)(OH)]4Cl2}2+ and {[Cu(phen)(OH)]4(H2O)2}4+ complex cations formed by condensation of four elongated square pyramids CuN2(OH)2Lap with the apical ligands Lap = Cl, H2O, OH. The resulting [Cu42‐OH)23‐OH)2] core has the shape of a zigzag band of three Cu2(OH)2 squares. The cations exhibit intramolecular and intermolecular π‐π stacking interactions and the latter form 2D layers with the non‐bonded Cl anions and H2O molecules in between (bond lengths: Cu–N = 1.995–2.038 Å; Cu–O = 1.927–1.982 Å; Cu–Clap = 2.563; Cu–Oap(OH) = 2.334–2.369 Å; Cu–Oap(H2O) = 2.256 Å). The Cu…Cu distances of about 2.93 Å do not indicate direct interactions, but the strongly reduced magnetic moment of about 2.74 B.M. corresponds with only two unpaired electrons per formula unit of 1 (1.37 B.M./Cu) and obviously results from intramolecular spin couplings (χm(T‐θ) = 0.933 cm3 · mol–1 · K with θ = –0.7 K).  相似文献   

11.
The single crystal X‐ray analysis of a novel thiophene‐2,5‐dicarboxylic acid (H2Tda) Manganese(II) coordination polymer, {Mn23‐Tda)2(μ‐H2O)(H2O)2(bipy)]·DMF}n, shows two different types of Mn2+‐ions with environment of Mn1O6 and Mn2O4N2, and the complex is a two‐dimensional polymer as a result of bridging (Tda)2? ligands and by connecting the carboxylate‐ and water‐bridged {Mn2(μ‐Tda)2(μ‐H2O)} nodes.  相似文献   

12.
Two manganese(II) coordination polymers, namely, [Mn1.5(BCB)(bpy)1.5(H2O)]n ( 1 ), and [Mn(HBCB)(bibp)2(H2O)] ( 2 ), were assembled from the mixed ligands of the flexible tripodal ligand of 3,5‐bis(2‐carboxylphenoxy)benzoic acid (H3BCB) and two rigid N‐donors [bpy = 4,4′‐bipyridine, and bibp = 4,4′‐bis(imidazolyl)biphenyl]. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectra, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. Structural analysis reveals that complex 1 is a 3D (3,4,6)‐connected {5 · 62}2{56 · 64 · 7 · 82 · 92}{64 · 8 · 9} net based on two kinds of inorganic nodes of dinuclear {Mn2(COO)2} SBUs and Mn(2) ions. Complex 2 is a hydrogen bonds based 3D supramolecule with 6‐connected {412 · 63}‐ pcu net. Besides, the variable‐temperature susceptibilities of 1 and 2 were investigated.  相似文献   

13.
The reaction of 4‐amino‐1,2,4‐Δ2‐triazoline‐5‐thione (ATT, 1 ) with AgNO3 in methanol led to the complex [Ag(ATT)2]NO3 ( 2 ). 2 was characterized by elemental analyses, 1H NMR, IR, and Raman spectroscopy as well as single‐crystal X‐ray diffraction. The molecular structure of 1 was also determined by single crystal X‐ray analysis. Crystal data for 1 at ?80 C: space group C2/c with a = 2107.4(2), b = 1425.1(1), c = 688.4(1) pm, β = 104.55(1)°, Z = 16, R1 = 0.0514, crystal data for 2 at ?80 °C: space group P21/c with a = 675.7(1), b = 1321.1(1), c = 1311.2(1) pm, β = 90.03(1)°, Z = 4, R1 = 0.0437.  相似文献   

14.
Three copper(II) coordination polymers (CuCPs), namely, [Cu0.5(1,4‐bib)(SO4)0.5]n ( 1 ), {[Cu(1,3‐bib)2(H2O)] · SO4 · H2O}n ( 2 ), and [Cu(bpz)(SO4)0.5]n ( 3 ), were assembled from the reaction of three N‐donors [1,4‐bib = 1,4‐bis(1H‐imidazol‐4‐yl)benzene, 1,3‐bib = 1,3‐bis(1H‐imidazol‐4‐yl)benzene, and Hbpz = 3‐(2‐pyridyl)pyrazole] with copper sulfate under hydrothermal conditions. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectroscopy, powder X‐ray diffraction (PXRD), and thermogravimetric analyses (TGA). Structure analyses reveal that complex 1 is a 3D 6‐connected {412 · 63}‐ pcu net, complex 2 is a fourfold 3D 4‐connected 66‐ dia net, whereas complex 3 is a 1D snake‐like chain, which further expanded into 3D supramolecular architectures with the help of C–H ··· O hydrogen bonds. Moreover, the photocatalytic tests demonstrate that the obtained CuCPs are photocatalysts in the degradation of MB with the efficiency is 86.4 % for 1 , 75.3 % for 2 , and 91.3 % for 3 after 2 h, respectively.  相似文献   

15.
The reaction of YbCl3 with two equivalents of NaN‐(SiMe3)2 has afforded a mixture of several ytterbium bis(trimethylsilyl) amides with the known complexes [Yb{N(SiMe3)2}2(μ‐Cl)(thf)]2 ( 1 ) and [Yb{N(SiMe3)2}3]( 4 ) as the main products and the cluster compound [Yb3Cl4O{N(SiMe3)2}3(thf)3]( 2 ) as a minor product. Treatment of 1 and 2 with hot n‐heptane gave the basefree complex [Yb{N(SiMe3)2}2(μ‐Cl)]2 ( 3 ) in small yield. The structures of compounds 1—4 and the related peroxo complex [Yb2{N(SiMe3)2}4(μ‐O2)(thf)2]( 5 ) have been investigated by single crystal X‐ray diffraction. In the solid‐state, 3 shows chlorobridged dimers with terminal amido ligands (av. Yb—Cl = 262.3 pm, av. Yb—N = 214.4 pm). Additional agostic interactions are observed from the ytterbium atoms to four methyl carbon atoms of the bis(trimethylsilyl)amido groups (Yb···C = 284—320 pm). DFT calculations have been performed on suitable model systems ([Yb2(NH2)4(μ‐Cl)2(OMe2)2]( 1m ), [Yb2(NH2)4(μ‐Cl)2]( 3m ), [Yb‐(NH2)3]( 4m ), [Yb2(NH24(μ‐O2)(OMe2)2]( 5m ), [Yb{N‐(SiMe3)2}2Cl] ( 3m/2 ) and Ln(NH2)2NHSiMe3 (Ln = Yb ( 6m ), Y ( 7m )) in order to rationalize the different experimentally observed Yb—N distances, to support the assignment of the O—O stretching vibration (775 cm ‐1) in the Raman spectrum of complex 5 and to examine the nature of the agostic‐type interactions in σ‐donorfree 3 .  相似文献   

16.
The title compounds, 1,3‐dibenzo­ylimidazolidine‐2‐thione, C17H14N2O2S, (I), and 1,3‐dibenzo­yl‐3,4,5,6‐tetra­hydro­pyrimidine‐2(1H)‐thione, C18H16N2O2S, (II), were obtained from the reactions of imidazolidine‐2‐thione and 1,4,5,6‐tetra­hydro­pyrimidine‐2‐thiol, respectively, with benzoyl chloride. Compounds (I) and (II) contain, respectively, imidazolidinethione [C=S = 1.6509 (14) Å] and ­pyrimidinethione [C=S = 1.6918 (19) Å] moieties bonded to two benzoyl rings. The mol­ecules of (I) exhibit C2 symmetry, the C=S bond lying along the twofold rotation axis, while the mol­ecules of (II) have mirror symmetry (Cs). The imida­zolidine ring in (I) is essentially planar, while the pyrimidine ring in (II) adopts a boat conformation. Mol­ecules of (I) are linked by weak inter­molecular C—H⋯O inter­actions, while mol­ecules of (II) are held together by van der Waals inter­actions.  相似文献   

17.
Investigation of the Hydrolytic Build‐up of Iron(III)‐Oxo‐Aggregates The synthesis and structures of five new iron/hpdta complexes [{FeIII4(μ‐O)(μ‐OH)(hpdta)2(H2O)4}2FeII(H2O)4]·21H2O ( 2 ), (pipH2)2[Fe2(hpdta)2]·8H2O ( 4 ), (NH4)4[Fe6(μ‐O)(μ‐OH)5(hpdta)3]·20.5H2O ( 5 ), (pipH2)1.5[Fe4(μ‐O)(μ‐OH)3(hpdta)2]·6H2O ( 7 ), [{Fe6(μ3‐O)2(μ‐OH)2(hpdta)2(H4hpdta)2}2]·py·50H2O ( 9 ) are described and the formation of these is discussed in the context of other previously published hpdta‐complexes (H5hpdta = 2‐Hydroxypropane‐1, 3‐diamine‐N, N, N′, N′‐tetraacetic acid). Terminal water ligands are important for the successive build‐up of higher nuclearity oxy/hydroxy bridged aggregates as well as for the activation of substrates such as DMA and CO2. The formation of the compounds under hydrolytic conditions formally results from condensation reactions. The magnetic behaviour can be quantified analogously up to the hexanuclear aggregate 5 . The iron(III) atoms in 1 ‐ 7 are antiferromagnetically coupled giving rise to S = 0 spin ground states. In the dodecanuclear iron(III) aggregate 9 we observe the encapsulation of inorganic ionic fragments by dimeric{M2hpdta}‐units as we recently reported for AlIII/hpdta‐system.  相似文献   

18.
The reaction of 4‐amino‐5‐methyl‐2H‐1,2,4‐triazole‐3(4H)‐thione (AMTT, 1 ) with AgNO3 and triphenylphosphane in a molar ratio 1:1:2 in ethanol led to the dimeric complex {[Ag(AMTT)(PPh3)2]NO3}2·4EtOH ( 2 ). 2 was characterized by elemental analyses, IR, 31P NMR spectroscopy as well as single crystal X‐ray diffraction. Crystal data for 2 at ?80 °C: space group with a = 1265.5(2), b = 1300.9(2), c = 1509.5(2) pm, α = 83.77(2)°, β = 79.22(2)°, γ = 62.89(2)°, Z = 2, R1 = 0.0330.  相似文献   

19.
In the title compound, [Cu2(C19H24N2O4)2(H2O)2]·2H2O, the asymmetric unit consists of one half of the bis{μ‐6,6′‐dimethoxy‐2,2′‐[propane‐1,2‐diylbis(iminomethylene)]diphenolato}bis[aquacopper(II)] complex and two water molecules. Two CuII centres are bridged through a pair of phenolate groups, resulting in a complex with a centrosymmetric structure, with the centre of inversion at the middle of the Cu2O2 plane. The Cu atoms are in a slightly distorted square‐pyramidal coordination environment (τ = 0.07). The average equatorial Cu—O bond length and the axial Cu—O bond length are 1.928 (3) and 2.486 (3) Å, respectively. The Cu—O(water) bond length is 2.865 (4) Å, so the compound could be described as having a weakly coordinating water molecule at each CuII ion and two solvent water molecules per dimetallic unit. The Cu...Cu distance and Cu—O—Cu angle are 3.0901 (10) Å and 87.56 (10)°, respectively. The molecules are linked into a sheet by O—H...O and C—H...O hydrogen bonds parallel to the [001] plane.  相似文献   

20.
The structure of [Co2(μ‐OH)2(μ‐OAc)(OAc)2(dipyam)2]AcO · EtOH ( 1 ) has been determined by single‐crystal X‐ray analysis. The cationic complex may be described as a “di(μ‐hydroxo)(μ‐acetato)dicobalt(III)” core with chelating 2, 2′‐dipyridylamine and monodentate acetate ligands. The coordination polyhedron around each cobalt atom is a distorted octahedral. The dimers are linked in the crystal by N‐H···Oionic AcO and C‐H···Omonodentate AcO hydrogen bonds. Spectroscopic data are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号