首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of shear on viscoelastic solutions of poly(ethylene oxide) (PEO) and clay [montmorillonite, i.e., Cloisite NA+ (CNA)] was investigated with rheology and small-angle neutron scattering (SANS). The steady-state viscosity and SANS were used to measure the shear-induced orientation and relaxation of the polymer and clay platelets. Anisotropic scattering patterns developed at much lower shear rates than in pure clay solutions. The scattering anisotropy saturated at low shear rates, and the CNA clay platelets aligned with the flow, with the surface normal parallel to the gradient direction. The cessation of shear led to partial and slow randomization of the CNA platelets, whereas extremely fast relaxation was observed for laponite (LRD) platelets. These PEO–CNA networklike solutions were compared with previously reported PEO–LRD networks, and the differences and similarities, with respect to the shear orientation, relaxation, and polymer–clay interactions, were examined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3102–3112, 2004  相似文献   

2.
We investigate the multilayered structures of poly(ethylene)oxide/montmorillonite nanocomposite films made from solution. The shear orientation of a polymer-clay network in solution combined with simultaneous solvent evaporation leads to supramolecular multilayer formation in the film. The resulting films have highly ordered structures with sheet-like multilayers on the micrometer length scale. The polymer covered clay platelets were found to orient in interconnected blob-like chains and layers on the nanometer length scale. Inside the blobs, scattering experiments indicate the polymer covered and stacked clay platelets oriented in the plane of the film. The polymer is found to be partially crystalline although this is not visible by optical microscopy. Atomic force microscopy suggests that the excess polymer, which is not directly adsorbed to the clay, is wrapped around the stacked platelets building blobs and the polymer also interconnects the polymer-clay layers. Overall our results suggest the re-intercalation of clay platelets in films made from exfoliated polymer-clay solutions as well as the supramolecular order and hierarchical structuring on the nanometer, via micrometer to the centimeter length scale.  相似文献   

3.
Highly oriented films were prepared simply by annealing a lamella-forming block copolymer, poly(ethylene oxide-b-styrene) (PEO-b-PS), with high molar mass under a pressure of 0.2 MPa. The oriented structures were characterized by small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD). The SAXS measurements showed that the lamellar layers of the block copolymer are highly oriented parallel in the film plane. The WAXD images showed that the c-axis of PEO crystals was oriented normal to the film plane. The Hermans-Stein orientation functions for the lamellar layer and the crystal axis are 0.954 and −0.466, respectively, and are close to the values of perfect orientation. It was considered that the highly oriented structure was formed by the combined effects of shear flow and self-organization of the block copolymer during annealing under stress. The high degree of orientation both for the lamellar layer and crystal planes also suggested that the crystallization in the confined domains results in a high degree of orientation of PEO crystals with respect to the lamellar interface of the block copolymer.  相似文献   

4.
We report on small-angle neutron scattering (SANS) and X-ray scattering (SAXS) investigations of foam films stabilized by sodium dodecyl sulfate. Previous measurements on dry foams (Axelos, M. A. V.; Boue, B. Langmuir 2003, 19, 6598) have shown the presence of spikes in the two-dimensional scattering data which suggest that the incident beam is reflected on some film surfaces. The latter interpretation is confirmed by new neutron studies performed on ordered ("bamboo") foams which allow selection of single films. In the first case, we show that the spikes of the scattered intensity can be obtained by reflection on two parts of the foam, namely, the films and the Plateau borders. With synchrotron radiation, first observations of distinct interference fringes have allowed an accurate determination of the film thickness. A comparison with X-ray and neutron data is made, opening a general discussion about the capabilities of small-angle scattering techniques for studying the microscopic properties of foam films.  相似文献   

5.
The equilibrium structure and shear response of model polymer-clay nanocomposite gels are measured using X-ray scattering, light scattering, optical microscopy, and rheometry. The suspensions form physical gels via the "bridging" of neighboring colloidal clay platelets by the polymer, with reversible adsorption of polymer segments onto the clay surface providing a short-range attractive force. As the flow disrupts this transient network, coupling between composition and stress leads to the formation of a macroscopic domain pattern, while the clay platelets orient with their surface normal parallel to the direction of vorticity. We discuss the shear-induced structure, steady-shear rheology, and oscillatory-shear response of these dynamic networks, and we offer a physical explanation for the mesoscale shear response. In contrast to flow-induced "banding" transitions, no stress plateau is observed in the region where macroscopic phase separation occurs. The observed platelet orientation is different from that reported for polymer-melt clay nanocomposites, which we attribute to effects associated with macroscopic phase separation under shear flow.  相似文献   

6.
The analysis of latex particles by small-angle scattering (small-angle X-ray scattering, SAXS; small-angle neutron scattering, SANS) is reviewed. Small-angle scattering techniques give information on the radial structure of the particles as well as on their spatial correlation. Recent progress in instrumentation allows to extend SANS and SAXS to the q-range of light scattering. Moreover, contrast variation employed in SANS and SAXS studies may lead to an unambiguous determination of the radial scattering length density of the particles in situ, i.e. in suspension. Hence, these techniques are highly valuable for a comprehensive analysis of polymer colloids as shown by the examples discussed herein.  相似文献   

7.
The structural and morphological characteristics of biaxially oriented polyamide 12 films are described on the basis of the results from differential scanning calorimetry, wide‐angle X‐ray diffraction (WAXD), polarized FT‐IR spectroscopy, and small angle X‐ray scattering (SAXS). The WAXD patterns of the oriented polyamide 12 films indicated only the monoclinic γ crystal with little dimensional changes of its unit cell depending on the stretching conditions. The crystallographic angles (α = γ = 90°, β = 121°) that were determined via the WAXD patterns confirmed the monoclinic symmetry of the γ crystal. Annealing the films stretched at 115 °C in boiling 20% formic acid solution did not result in structural changes of the crystalline unit cell. The chain‐axis repeat distance of 31.9 Å for the γ crystal was experimentally obtained with (0 26 0) planes. It was shortened as compared with that of all‐trans conformation. For films having primary orientation to MD, normals to the basal plane of folded‐chain lamellae were parallel to MD (primary stretch direction) resulting in two‐point SAXS patterns. Growth in long spacing with an increase of stretch temperature was discovered. Annealing the films induced further elongation in long spacing. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1189–1200, 2002  相似文献   

8.
Low density polyethylene nanocomposites were prepared using differently modified montmorillonite (MMT) and different compatibilizers. The best results were obtained for MMT with largest gallery distance. The most exfoliated system was further optimized for superior mechanical properties by varying the compounding condition. The criteria were mechanical properties of nanocomposites and X-ray proofs of exfoliation. The optimized nanocomposites were used for film blowing. The effect of blow ratio on mechanical properties and oxygen permeation of films was evaluated for two best nanocomposites and two films blown from pristine polyethylene. The texture of crystalline phase of blown films was analyzed by X-ray pole figure technique, SAXS and AFM. Two components of texture were detected, the first component related to the molecular orientation of polyethylene by film blowing and take-up and the second connected with the formation of free surfaces of the film. The crystallinity degree from DSC and long period determined from SAXS of polyethylene component were nearly independent of the additives. It indicated that the compatibilizer was preferentially located around clay platelets and did not enter the amorphous layers of polyethylene. Also the orientation of clay platelets was determined by FTIR using 1080 cm−1 band characteristic for Si-O bonds. A clear correlation of oxygen permeativity of blown films with clay platelets orientation and degree of exfoliation was evidenced.  相似文献   

9.
Aqueous gel-like solutions of N-acyl-L-aspartic acids (C(n)Asp, n=14, 16, 18) and N-dodecanoyl-beta-alanine (C(12)Ala) were prepared at pH 5-6 at room temperature. Structures of supramolecular assemblies in the solutions were investigated by atomic force microscopy (AFM), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS). The cross-sectional radii, 22-30 ?, of helical, fibrous assemblies were obtained from analysis of SANS for 1% gel-like C(n)Asp solutions. Three Bragg spacings were observed in a SANS spectrum for a 6% C(16)Asp solution. C(n)Asp molecules are associated into the unit chain of a helical bilayer strand with a diameter of 50-60 ?. Unit chains where linear bilayers twist form a double strand with helical sense of approximately 650-? pitch. It was confirmed from AFM images that cylindrical fibers in a gel-like C(12)Ala solution had a circular cross-section. The SAXS spectrum showed characteristic Bragg spacings. Cylindrical C(12)Ala fibers consist of multilamellar layers of period approximately 34-?. The fibers are laterally organized with period 365-380 ?. Copyright 2000 Academic Press.  相似文献   

10.
Meng  Ling-pu  Chen  Xiao-wei  Lin  Yuan-fei  Li  Liang-bin 《高分子科学》2017,35(9):1122-1131
Young's modulus of biaxially oriented polypropylene (BOPP) films prepared with homemade film stretcher was investigated,which can be used to indicate the softness of fihns.It was found that the modulus of films was decreased by about 69% as the content of polyethylene (PE) added into polypropylene (PP) reached 30%.Also,increasing draw temperature can induce lower stress level during stretching,which may lead to the formation of crystals with low orientation level and thus decreased modulus of films.Based on laboratory study,BOPP films produced on commercial line were studied by differential scanning calorimetry (DSC),wide and small-angle X-ray scattering (WAXS,SAXS) with varying contents of PE.SAXS results show that the crystals are oriented in both machine direction (MD) and transverse direction (TD),and the crystals are more oriented in TD than MD according to the WAXS results for all films.Also,the orientation parameter of crystal along TD increases from 0.68 to 0.83 as the contents of PE increase from 0% to 25%.Meanwhile,the modulus of films in MD declines with increase of PE contents generally,improving the film softness.Orientation of crystals is thus an effective structure parameter to adjust the film softness.The relationship of processing-structure-property is also established.  相似文献   

11.
The self-assembly in aqueous solution of a PEG-peptide conjugate is studied by spectroscopy, electron microscopy, rheology and small-angle X-ray and neutron scattering (SAXS and SANS). The peptide fragment, FFKLVFF is based on fragment KLVFF of the amyloid beta-peptide, Abeta(16-20), extended by two hydrophobic phenylalanine units. This is conjugated to PEG which confers water solubility and leads to distinct self-assembled structures. Small-angle scattering reveals the formation of cylindrical fibrils comprising a peptide core and PEG corona. This constrained structure leads to a model parallel beta-sheet self-assembled structure with a radial arrangement of beta sheets. On increasing concentration, successively nematic and hexagonal columnar phases are formed. The flow-induced alignment of both structures was studied in situ by SANS using a Couette cell. Shear-induced alignment is responsible for the shear thinning behaviour observed by dynamic shear rheometry. Incomplete recovery of moduli after cessation of shear is consistent with the observation from SANS of retained orientation in the sample.  相似文献   

12.
The self-assembling structures and dynamics of surfactants determine most of their macroscopic physicochemical properties and performances. Herein, we review recent work on the self-assembly of surfactants by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) in conjunction with cryogenic transmission electron microscopy (Cryo-TEM) from the perspective of researchers having only limited theoretical knowledge of these techniques but expert in surfactants. Emphasis is placed on the structural analysis of typical surfactant aggregates over a wide range of size scales from nanometers up to microns, including spherical and rod-like micelles, wormlike micelles, vesicles, liquid crystals and coacervates, by combining different numerical approaches to the treatment of small-angle scattering data with the direct Cryo-TEM imaging method. Furthermore, the complementarity between SAXS and SANS, and between the scattering techniques and Cryo-TEM, that is, specific contributions of these techniques, is also covered.  相似文献   

13.
Small-angle scattering (SAS) techniques, like small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), were used to measure and thus to validate the accuracy of a novel technology for virus sizing and concentration determination. These studies demonstrate the utility of SAS techniques for use in quality assurance measurements and as novel technology for the physical characterization of viruses.  相似文献   

14.
Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.  相似文献   

15.
取向非晶态聚对苯二甲酸乙二酯(PET)膜的结晶   总被引:3,自引:4,他引:3  
范庆荣  钱人元  STAMM  M. 《高分子学报》1991,(5):567-571
采用小角和广角X-散射法比较了未拉和热拉PET膜在结晶性能方面的差别,热拉试样在分子链段的小尺度范围内基本上是无规取向,而在分子链的大尺度范围内却是高度取向的。研究结果表明:热拉PET膜的结晶诱导期较短,长周期发展得较快,结晶后小角X-线散射表现出明显的各向异性,在热处理过程中先出现显著的热收缩,随后又表现出结晶伸长现象,这些都和未拉试样有明显的差别。  相似文献   

16.
Summary A combined wide (WA) and small angle X-ray diffraction (SAXS) study of melt compressed low density PE samples into the form of very thin films is reported. The WAXD patterns show an uniaxialb axis orientation normal to the film surface which can be interpreted in terms of a row structure in the plane of the film. The analysis of SAXS data indicates, in addition, a preferential orientation of bundles of stacked lamellae parallel to the film surface separated by longitudinal microvoids.With 3 figures  相似文献   

17.
The phase behavior of silica solutions containing organic and inorganic cations was studied at room temperature using conductivity, pH, and small-angle scattering experiments. A critical aggregation concentration (cac) was observed at approximately 1:1 ratio of SiO(2)/OH(-) for all cation solutions from conductivity and pH studies. From this cac, a phase diagram of the system was developed with three distinct phase regions in pseudoequilibrium: a monomer/oligomer region (I), a monomer/oligomer/nanoparticle region (II), and a gel region (III). Small-angle X-ray and neutron scattering (SAXS and SANS) on solutions of region II formed with tetrapropylammonium hydroxide (TPAOH) revealed that the nanoparticles have a core-shell structure. Structure analysis of the SAXS and SANS data was best fit by a core-shell oblate ellipsoid model. A polydisperse set of core-shell spheres also fit the data well although with lower agreement factors. Similar nanoparticle morphologies were found in solutions of TMAOH, CsOH, and NaOH.  相似文献   

18.
19.
A surfactant featuring a polymerizable pyrrole head group (dodecyl-dimethyl-(2-pyrrol-1-yl-ethyl)-ammonium bromide, DDPABr) was synthesized. The thermotropic behavior of the surfactant was investigated by differential scanning calorimetry (DSC) and X-ray scattering techniques, with small-angle X-ray scattering (SAXS) analysis revealing a highly ordered lamellar bilayer structure. After full characterization, DDPABr was used in the preparation of mesostructured SiO2 nanocomposite thin films via evaporation-induced self-assembly (EISA). Resulting thin SiO2-DDPABr films were studied by 1D and 2D small-angle X-ray scattering (SAXS) techniques, indicating a lamellar nanocomposite structure. Suitable theoretical SAXS models were applied to fit the experimental 1D SAXS data. The surfactant could be chemically polymerized within the lamellar domains.  相似文献   

20.
Understanding the adsorption mechanisms in nanostructured polymer films has become crucial for their use in technological applications, since film properties vary considerably with the experimental conditions utilized for film fabrication. In this paper, we employ small-angle X-ray scattering (SAXS) to investigate solutions of polyanilines and correlate the chain conformations with morphological features of the nanostructured films obtained with atomic force microscopy (AFM). It is shown that aggregates formed already in solution affect the film morphology; in particular, at early stages of adsorption film morphology appears entirely governed by the chain conformation in solution and adsorption of aggregates. We also use SAXS data for modeling poly(o-ethoxyaniline) (POEA) particle shape through an ab initio procedure based on simulated annealing using the dummy atom model (DAM), which is then compared to the morphological features of POEA films fabricated with distinct pHs and doping acids. Interestingly, when the derivative POEA is doped with p-toluene sulfonic acid (TSA), the resulting films exhibit a fibrillar morphology-seen with atomic force microscopy and transmission electron microscopy-that is consistent with the cylindrical shape inferred from the SAXS data. This is in contrast with the globular morphology observed for POEA films doped with other acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号