首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
海洋天然产物研究新进展   总被引:12,自引:0,他引:12  
曾陇梅 《有机化学》1989,9(5):402-413
海洋天然产物化学是目前天然产物化学中最活跃的研究领域之一。近年来,从海洋生物中分离到非常多的化学结构和生理活性上令人注目的新化合物,引起了有机化学家和药物化学家的关注。本文按萜类、太环内酯、聚醚类、生物碱,环肽、含氰化合物、甾醇、聚丙酸酯类化合物等化学结构来概述海洋天然产物研究近年来的进展。  相似文献   

2.
海洋天然产物合成研究是海洋天然有机化学最活跃的研究领域之一。本文综述中国海洋天然产物合成研究的最新进展,包括海洋环肽、西松烷(烯)和西松烷型二萜内酯、喹啉酮衍生物和三丙酮胺以及柳珊瑚酸类似物等。  相似文献   

3.
The author reflects on his early experiences as a chemist, and on the subsequent shift in emphasis that his research has undergone from mechanistic and synthetic organic chemistry to natural products chemistry. Finally, the extension of the field of natural products chemistry into the emerging discipline of chemical ecology is noted. This essay concludes with a consideration of the importance of including science in the curricula of all college and university students.  相似文献   

4.
海鞘中抗肿瘤活性物质的研究概况   总被引:11,自引:0,他引:11  
王超杰  苏镜娱 《有机化学》1997,17(6):481-487
海鞘的生理活性物质是海洋天然产物化学中引人注目的研究领域之一。近年来,从海鞘中分离出许多结构新颖、生理活性显著的新化合物,引起了有机化学家和药物学家等的日益重视。本文按肽、稠环芳香族生物碱、脂肪族生物碱、多硫化物、大环内酯、萜类化合物等化学结构分类综述海鞘抗肿瘤成分的研究进展。  相似文献   

5.
本文综述了中国大陆地区有机化学研究人员2011至2012年两年内在合成方法学、有机合成化学、元素有机化学以及天然产物化学等领域获得的重要成果。文章中共引用参考文献355篇,其中110多篇手性金属配合物和有机小分子催化的不对称反应、金属催化的碳氢键活化等合成方法学论文和30余篇氟有机化学论文基本来源于德国《应用化学》(国际版)和《美国化学杂志》。本文汇集了中国有机化学家两年中合成的150多个具有生物活性和化学结构多样性的天然产物,其中不乏具有高度挑战性的复杂天然分子。在近两年中中国有机化学家从陆地和海洋的生物体内发现各种不同类型新天然产物90多个。  相似文献   

6.
Marine natural products have long played an important role in natural products chemistry and drug discovery. Mirroring the rich variety and complicated interactions of the marine environment, the substances isolated from sea creatures tend to be incredibly diverse in both molecular structure and biological activity. The natural products isolated from the polyps of marine zoanthids are no exception. The zoanthamine alkaloids, the first of which were isolated over 20 years ago, are of particular interest to the synthetic community because they feature a novel structural framework and exhibit a broad range of biological activities. In this Review, we summarize the major contributions to understanding the zoanthamine natural products with regard to their isolation and structure determination, as well as studies on their biological activity and total synthesis.  相似文献   

7.
Wei Zhong 《Tetrahedron》2009,65(52):10784-6719
We describe herein the redox chemistry of the pseudopterosin class of marine natural products. Known for their anti-inflammatory and wound healing properties, their chemistry has largely gone unexplored. Details of both voltammetric and preparative scale experiments are provided and speculation is provided concerning the potential role of electron transfer chemistry in the expression of pseudopterosin bioactivity.  相似文献   

8.
ComputerHandlingofChemicalandBiologicalDataofTraditionalChineseMedicinesCHEChun-taoa**,PaulR.CarlieraandOpheliaC.W.Leeb(aDepa...  相似文献   

9.
The early (1950's and 1960's) use of mass spectrometry in natural products chemistry and its evolution to the present significance in biochemistry is recounted. This methodology allowed the facile and speedy determination of the structure of a number of indole alkaloids, such as sarpagine, quebrachamine, and two groups isolated from the roots of Aspidosperma quebracho blanco. At the same time, the first strategy for the sequencing of small peptides by mass spectrometry was demonstrated. It slowly advanced, over a period of two decades, to an important alternative of the ubiquitous automated Edman degradation. Further advances in methodology and instrumentation established mass spectrometry as today's indispensable tool for the characterization of proteins in biochemistry and biology. A new concept of the ionization of highly acidic compounds as the protonated complexes with basic peptides, which allows the accurate determination of the molecular weights of the former, a highly sensitive method for the sequencing of heparin fragments and related sulfated glycosaminoglycans was developed more recently.  相似文献   

10.
A highly diastereoselective alpha-alkylation of N'-tert-butanesulfinyl amidines has been developed along with methods for converting the alkylation products to enantiomerically enriched amines that incorporate both alpha- and beta-stereocenters. The utility of this chemistry is further demonstrated by the first asymmetric synthesis of the antimicrobial marine natural product (6R,7S)-7-amino-7,8-dihydro-alpha-bisabolene.  相似文献   

11.
The islands of the South Pacific Ocean have been in the limelight for natural product biodiscovery, due to their unique and pristine tropical waters and environment. The Kingdom of Tonga is an archipelago in the central Indo-Pacific Ocean, consisting of 176 islands, 36 of which are inhabited, flourishing with a rich diversity of flora and fauna. Many unique natural products with interesting bioactivities have been reported from Indo-Pacific marine sponges and other invertebrate phyla; however, there have not been any reviews published to date specifically regarding natural products from Tongan marine organisms. This review covers both known and new/novel Marine Natural Products (MNPs) and their biological activities reported from organisms collected within Tongan territorial waters up to December 2020, and includes 109 MNPs in total, the majority from the phylum Porifera. The significant biological activity of these metabolites was dominated by cytotoxicity and, by reviewing these natural products, it is apparent that the bulk of the new and interesting biologically active compounds were from organisms collected from one particular island, emphasizing the geographic variability in the chemistry between these organisms collected at different locations.  相似文献   

12.
The chemistry (isolation, biosynthesis and synthesis) and biological activities of natural products bearing a guanidine function are reviewed, including macrocyclic derivatives from terrestrial microbes, peptides from cyanobacteria and guanidine alkaloids from marine invertebrates. The review contains 258 references.  相似文献   

13.
化学基元组学(chemomics)是与化学信息学、生物信息学、合成化学等学科相关的交叉学科.生物系统从内源性小分子(天然砌块)出发,通过酶催化的化学反应序列制造天然产物.生物系统通过化学反应和天然砌块向目标天然产物“砌入”一组原子,这样的一组原子称为化学基元(chemoyl).化学基元组(chemome)是生物组织中所含有的化学基元的全体.化学基元组学研究各种化学基元的结构、组装与演化的基本规律.在生存压力和繁衍需求的驱动下,生物系统已经进化出有效手段来合成天然产物以应付环境的变化,并产生了丰富多彩的生物和化学多样性.近年来,人们意识到药物创新的瓶颈之一是药物筛选资源的日益枯竭.化学基元组学可以解决这个瓶颈问题,它通过揭示生物系统制备化学多样性的规律,发展仿生合成方法制备类天然化合物库(quasi natural product libraries)以供药物筛选.本文综述了化学基元组学的主要研究内容及其在药物创新各领域中的潜在应用.  相似文献   

14.
Chemomics is an interdisciplinary study using approaches from chemoinformatics,bioinformatics,synthetic chemistry,and other related disciplines.Biological systems make natural products from endogenous small molecules (natural product building blocks) through a sequence of enzyme catalytic reactions.For each reaction,the natural product building blocks may contribute a group of atoms to the target natural product.We describe this group of atoms as a chemoyl.A chemome is the complete set of chemoyls in an organism.Chemomics studies chemomes and the principles of natural product syntheses and evolutions.Driven by survival and reproductive demands,biological systems have developed effective protocols to synthesize natural products in order to respond to environmental changes;this results in biological and chemical diversity.In recent years,it has been realized that one of the bottlenecks in drug discovery is the lack of chemical resources for drug screening.Chemomics may solve this problem by revealing the rules governing the creation of chemical diversity in biological systems,and by developing biomimetic synthesis approaches to make quasi natural product libraries for drug screening.This treatise introduces chemomics and outlines its contents and potential applications in the fields of drug innovation.  相似文献   

15.
A decade of capillary electrophoresis   总被引:2,自引:0,他引:2  
Issaq HJ 《Electrophoresis》2000,21(10):1921-1939
Since the introduction of the first commercial capillary electrophoresis (CE) instrument a decade ago, CE applications have become widespread. Today, CE is a versatile analytical technique which is successfully used for the separation of small ions, neutral molecules, and large biomolecules and for the study of physicochemical parameters. It is being utilized in widely different fields, such as analytical chemistry, forensic chemistry, clinical chemistry, organic chemistry, natural products, pharmaceutical industry, chiral separations, molecular biology, and others. It is not only used as a separation technique but to answer physicochemical questions. In this review, we will discuss different modes of CE such as capillary zone electrophoresis, micellar electrokinetic chromatography, capillary gel electrophoresis, capillary isoelectric focusing, and capillary electrochromatography, and will comment on the future direction of CE, including array capillary electrophoresis and array microchip separations.  相似文献   

16.
Synthesis of biologically active compounds, including natural products and pharmaceutical agents, is an important and interesting research area since the large structural diversity and complexity of bioactive compounds make them an important source of leads and scaffolds in drug discovery and development. Many structurally and also biologically interesting compounds, including marine natural products, have been isolated from nature and have also been prepared on the basis of a computational design for the purpose of developing medicinal chemistry. In order to obtain a wide variety of derivatives of biologically active compounds from the viewpoint of medicinal chemistry, it is essential to establish efficient synthetic procedures for desired targets. Newly developed reactions should also be used for efficient synthesis of desired compounds. Thus, recent progress in the synthesis of biologically active compounds by focusing on the development of new reactions is summarized in this review article.  相似文献   

17.
Dynamic combinatorial chemistry is based on the reversible combination of initial building blocks to form dynamic combinatorial libraries. It has recently emerged as an efficient strategy to detect and to evaluate affinity between the library products and a target molecule. In this review, examples from various fields of chemistry and biochemistry are presented and extensively discussed. The last section deals with the practical aspects for implementing this approach.  相似文献   

18.
Until recently, the field of diversity and library design has more or less ignored natural products as a compound source. This is probably due to at least two reasons. First, combinatorial and reaction-based approaches have been major focal points in the early days of computational library design. In addition, a widespread view is that natural products are often highly complex and not amenable to medicinal chemistry efforts. This contribution introduces recent computational approaches to systematically analyze natural molecules and bridge the gap between natural products and synthetic chemistry programs. Large scale comparisons of natural and synthetic molecules are discussed as well as studies designed to identify `synthetic mimics' of natural products with specific activity. In addition, a concept for the design of natural/synthetic hybrid libraries is introduced. Although research in this area is still in its early stages, an important lesson to be learned from computational analyses is that there is no need to a priori `shy away' from natural products as a source for molecular design.  相似文献   

19.
Studies carried out at the Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences and at other centers of structural investigation of marine organism metabolites were used as examples to consider some features of the biochemistry of marine natural products and the achievements of marine bioorganic chemistry, which open up ways to the development of new drugs and biological preparations.  相似文献   

20.
Synthesis of the triol that has been proposed to be the marine natural product sclerophytin F has been completed along with the syntheses of three diastereomers. Comparison of the NMR spectroscopic data for all four compounds to the data reported for the natural product reveals that sclerophytin F is not the 3S diastereomer of sclerophytin A as proposed by Friedrich and Paquette. Re‐analysis of the NMR spectroscopic data for known sclerophytin natural products and synthetic analogues leads to the conclusion that sclerophytins E and F are the same compound. This finding has allowed structural reassignment of several other cladiellin natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号