首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
研究了Al2O3担载的硫化CoMo催化剂上NO被H2还原的规律,并考察了不同Mo含量的CoMo/Al2O3催化剂、单一的Mo/Al2O3和Co/Al2O3催化剂,以及原料气中H2/NO比对反应活性和选择性的影响。结果表明,硫化的5.1%C-15.2%Mo/Al2O3催化剂具有最高的催化活性和选择性,在200℃以下时反应产物为N2O,在350℃以上时则完全转化为N2.进一步增加Mo含量引起在350-450℃间N2选择性轻微下降,提高原料气中的H2含量可明显提高反应活性和N2选择性,但当n(H2)/n(NO)>3后反应性能不再变化。催化剂具有较高的稳定性,反应产物中始终未观察到有H2S或SO2产生,即反应未引起催化剂中的晶格S流失。这说明H2的存在抑制了NO对硫化物表面的氧化所导致的催化剂失活。  相似文献   

2.
以浸渍法制备的Fe2O3/γ-Al2O3为载体,采用均相沉积沉淀方法制备了Au/Fe2O3/Al2O3催化剂.该催化剂在丙烯选择催化还原NO反应中显示出很好的低温催化活性,300℃时NO被选择还原为N2的转化率可达43%,而在Au/Al2O3催化剂上,NO的转化率仅为21%.水蒸气的加入对催化剂活性的影响较小.X射线衍射结果表明,Au和Fe2O3高度分散在Al2O3载体上.吸附氢气的程序升温还原结果表明,Au与Fe2O3之间存在着强相互作用,Au的存在促进了Fe2O3的还原,Au和Fe2O3之间的协同作用可能是Au/Fe2O3/Al2O3催化剂在丙烯选择还原NO反应中具有较高低温催化活性的原因之一.  相似文献   

3.
 研究了Al2O3担载的硫化CoMo催化剂上NO被H2还原的规律,并考察了不同Mo含量的CoMo/Al2O3催化剂、单一的Mo/Al2O3和Co/Al2O3催化剂,以及原料气中H2/NO比对反应活性和选择性的影响.结果表明,硫化的5.1%Co-15.2%Mo/Al2O3催化剂具有最高的催化活性和选择性,在200℃以下时反应产物为N2O,在350℃以上时则完全转化为N2.进一步增加Mo含量引起在350~450℃间N2选择性轻微下降.提高原料气中的H2含量可明显提高反应活性和N2选择性,但当n(H2)/n(NO)>3后反应性能不再变化.催化剂具有较高的稳定性,反应产物中始终未观察到有H2S或SO2产生,即反应未引起催化剂中的晶格S流失.这说明H2的存在抑制了NO对硫化物表面的氧化所导致的催化剂失活.  相似文献   

4.
以不同沉淀剂和铝盐与SnCl4共沉淀制备了Sn/Al2O3催化剂.考察了催化剂在富氧条件下催化丙烯选择性还原NO的性能,借助于X射线衍射(XRD)、扫描电镜(SEM)、N2吸附-脱附、吡啶吸附红外光谱(Py-IR)和程序升温还原(TPR)等方法研究了催化剂性能与结构的关系.发现以NH3.H2O和NH4HCO3为沉淀剂、NH4Al(SO4)2为铝盐制备的Sn/Al2O3催化剂催化活性最高,NO转化率达90.9%,最佳催化活性温度为350℃.该催化剂的比表面积为254 m2/g,孔体积为0.878 cm3/g,孔径分布曲线在3~8 nm出现双峰,Sn物种主要以晶态SnO2存在,且表面Lewis酸酸量增加.  相似文献   

5.
郭锡坤  林树东 《催化学报》2008,29(3):221-227
将Al(NO3)3-Ce(NO3)3混合溶液滴入到NH4HCO3-NH3.H2O混合溶液中,采用共沉淀法制备了CeO2-Al2O3复合载体.采用等体积浸渍法分别浸渍助剂La和活性组分Cu,制备了Cu/La/CeO2-Al2O3催化剂.考察了催化剂在富氧条件下对丙烯选择性还原NO反应的催化活性,并借助扫描电镜、原子力显微镜、X射线衍射、比表面积测定、红外光谱、热重分析、X射线光电子能谱和程序升温还原等方法研究了催化剂活性与结构之间的关系.结果表明,CeO2-Al2O3复合载体能显著增大催化剂的比表面积和孔径,增加表面Lewis酸酸量,改善催化剂的还原性能;助剂La能进一步增大催化剂的比表面积和孔径,增加表面Br nsted酸酸量,显著提高催化剂的热稳定性;催化剂的粒径较小,对丙烯选择性还原NO反应具有较高的催化活性,最高催化活性时的温度较低.  相似文献   

6.
 固定SnO2含量为60%,采用不同沉淀方法和在不同沉淀条件下制备了锡锆固溶体催化剂Sn0.45Zr0.55O2,考察了沉淀过程对其结构和性能的影响.控制尿素浓度为总金属离子(Sn4++Zr4+)浓度的20倍,采用均相沉淀法制备的锡锆固溶体Sn0.45Zr0.55O2对催化NO还原具有最高活性和较好的重复性,在350℃下最大NO转化率达到74%.XRD,Raman,XPS,BET比表面测定和孔结构分析表明,沉淀条件不同,沉淀物的成核及生长过程不同,对SnO2与ZrO2之间的固溶度、催化剂表面元素分布、比表面和孔道结构以及催化活性都有较大的影响.ZrO2在SnO2(r)晶格中较高的固溶度、Sn在催化剂表面一定程度的偏析以及催化\r\n剂较大的孔径均有利于提高对NO还原反应的催化活性.  相似文献   

7.
用CuO/γ-Al2O3催化剂同时脱除烟气中的SO2和NO   总被引:13,自引:1,他引:13  
 研究了用CuO/γ-Al2O3催化剂同时脱除烟气中的SO2和NO,并在固定床反应器中考察了反应条件对其催化活性的影响.结果表明,温度和SO2对CuO/γ-Al2O3的催化活性均具有双重影响.新鲜催化剂和硫化催化剂上最适宜的脱硝温度分别为250~300℃和300~450℃,最适宜的n(NH3)/n(NO)约为1.2.烟气中的氧可大大提高CuO/γ-Al2O3的脱硫脱硝活性.综合考虑吸附硫容和NO脱除率,CuO/γ-Al2O3同时脱硫脱硝的最适宜温度为350~450℃.温度和SO2在高温区对CuO/γ-Al2O3活性的影响源于两者对NH3氧化活性的改变,高温下CuO/γ-Al2O3的活性下降是因为NH3氧化加剧;SO2通过使催化剂硫化生成硫酸盐来抑制NH3氧化,从而提高CuO/γ-Al2O3的活性.吸硫饱和的催化剂可于5%NH3中还原再生,再生后其硫容较初始时降低,但其活性大幅度提高.  相似文献   

8.
用柠檬酸-溶胶凝胶法制备了CexCo2-xAlO4系列复合氧化物和K2CO3改性催化剂,考察了复合氧化物组成、母液pH值、钾负载量对N2O催化剂活性的影响,用N2物理吸附、X射线衍射(XRD)、扫描电镜(SEM)、H2程序升温还原(H2-TPR)、O2程序升温脱附(O2-TPD)、X射线光电子能谱(XPS)等方法表征了催化剂结构。结果表明:用Ce取代Co2AlO4中部分Co制得的CexCo2-xAlO4复合氧化物催化活性有所提高,其中母液pH=2、组成为Ce0.05Co1.95AlO4的催化剂活性较高,该催化剂具有较高的比表面积、较小的晶粒及Ce-Co间的协同效应;进一步研究表明,由于K粒子的电子效应,使得0.05K/Ce0.05Co1.95AlO4的催化活性又优于其他催化剂,有氧气氛中450C连续反应50h,N2O分解率达98.5%。  相似文献   

9.
固定SnO2含量为60%,采用不同沉淀方法和在不同沉淀条件下制备了锡锆溶体催化剂Sn0.45Zr0.55O2,考察了沉淀过程对其结构和性能的影响,控制尿素浓度为总金属离子(Sn^4 Zr^4 )浓度的20倍,采用均相沉淀法制备的锡猪固溶体Sn0.45Zr0.55O2对催化NO还原具有最高活性和较好的重复性,在350℃下最大NO转化率达到74%,XRD,Raman,XPS,BET比表面测定和孔结构分析表明,沉淀条件不同,沉淀物的成核及生长过程不同,对SnO2与ZrO2之间的固溶度,催化剂表面元素分布,比表面和孔道结构以及催化活性都有较大的影响,ZrO2在SnO2(r)晶格中较高的固溶度,Sn在催化剂表面一定程度的偏析以及催化剂较大的孔径均有利于提高对NO还原反应的催化活性。  相似文献   

10.
采用溶胶-凝胶法(SG)制备了掺杂少量La或Ce的Pt/Al2O3贵金属催化剂和In2O3/Al2O3氧化物催化剂, 并考察了La或Ce对催化剂的比表面和晶相结构和丙烯在这些催化剂上选择性还原NO的活性. 结果表明, 掺杂少量的La或Ce, 可以改变催化剂的热稳定性, 富氧条件下丙烯选择性催化还原NO的反应中, La或Ce的掺杂对催化活性和催化活性温度窗口没有明显改善.  相似文献   

11.
用浸渍法制备了CuO/γ-Al2O3催化剂和CeO2改性的CeO2-CuO/γ-Al2O3催化剂,考察了焙烧温度对CuO/γ-Al2O3和CeO2-CuO/γ-Al2O3催化剂C3H6还原NO反应活性的影响,以及CeO2的添加量对CeO2-CuO/γ-Al2O3催化剂C3H6还原NO反应活性的影响。结果表明,在200 ℃~500 ℃的焙烧温度范围内,焙烧温度对CuO/γ-Al2O3催化剂的活性影响很小;在500 ℃~800 ℃的焙烧温度范围内,随着焙烧温度的升高CuO/γ-Al2O3催化剂的活性急剧下降,由XRD物相测定结果可知,归因于对反应表现惰性的尖晶石CuAl2O4相的生成。当焙烧温度为500 ℃时,CeO2的添加对CuO/γ-Al2O3催化剂的活性影响很小;当焙烧温度为800 ℃时,CeO2的添加对CuO/γ-Al2O3催化剂有明显的助催化作用,当Ce和Cu的摩尔比为1∶10时,NO转化率较为理想。  相似文献   

12.
富氧条件下Cu/Al2O3催化剂上C3H6选择性还原NO的研究   总被引:9,自引:0,他引:9  
以Cu/Al2O3为催化剂,对富氧条件下C3H6为还原剂选择性催化还原NO反应进行了研究.活性评价结果表明,与高活性的Ag/Al2O3催化剂相比,Cu/Al2O3催化剂选择性还原NO的活性较低,NO的最高转化率仅为40%.在所考察的温度范围(473~723K)内,红外谱图中不存在有机含氮化合物(R—ONO和R—NO2)的特征振动吸收峰.作为反应中间体—NCO的前驱体,有机含氮化合物在Cu/Al2O3催化剂表面难以生成是造成催化剂选择性还原NO活性低的直接原因.在Cu/Al2O3催化剂上,NO2吸附能够优先发生,并以NO3-物种的形式覆盖在大部分催化剂表面.动态原位红外光谱实验发现,这种NO3-表面物种与C3H6的反应性较差,使生成有机含氮化合物的关键反应难以发生,但此时的催化剂表面有利于C3H6和O2的完全氧化反应,这是导致Cu/Al2O3催化剂选择性较低的根本原因.  相似文献   

13.
李想  孟明  刘咏  罗金勇 《催化学报》2007,28(9):835-840
采用尿素水解法或吸附沉淀法制备了金属氧化物载体,并用浸渍法负载0.5%Pd制得了Pd/Sn0.4Zr0.6O2,Pd/ZrO2,Pd/SnO2,Pd/SnO2-Al2O3和Pd/Al2O3催化剂.采用原位漫反射红外光谱、拉曼光谱、X射线光电子能谱和程序升温还原等方法对催化剂结构进行了表征,探讨了不同载体对表面PdOx物种化学吸附性质和氧化还原性能的影响,并与样品的丙烷氧化活性相关联.漫反射红外光谱表明,在Pd/SnO2-Al2O3中,Sn对Al2O3表面的Pd原子簇起到稀释作用,促进了Pd的分散,使得其CO线式吸附强度明显高于Pd/Al2O3,但Pd过高的分散度不仅减少了表面Pd-PdO活性位对的数目,而且使反应中间物种Pd-OH之间脱水困难,因而阻塞了活性位,降低了其循环氧化还原活性;而在Sn0.4Zr0.6O2复合氧化物载体中,SnO2有效地阻止了四方晶相ZrO2向稳态单斜晶相转变,且复合载体的比表面积较ZrO2和SnO2有所增加,其表面PdOx物种的分散度适中.此外,Sn0.4Zr0.6O2复合氧化物负载的Pd的价态介于Pd0与Pd2 之间,表面氧空位较多,促进了丙烷中C-H键的活化,使比表面积较低的Pd/Sn0.4Zr0.6O2具有最好的催化丙烷氧化能力,相反比表面积较高的Pd/SnO2-Al2O3活性很差,说明分散度适中且具有较低氧化态的PdOx(0相似文献   

14.
测定了含ZrO2的Rh/γ-Al2O3催化剂上NO+C2H4和NO+C2H4+O2的反应活性,并应用TPR、XRD、BET比表面等表征了ZrO2的加入方式和晶型对Rh/γ-Al2O3催化剂活性和结构的影响。结果表明,ZrO2的加入一定程度地抑制了Rh3+与γ-Al2O3之间的相互作用和γ-Al2O3的相变,提高了催化剂的热稳定性,明显提高了850℃老化样品的NO+C2H4反应活性。对于NO+C2H4+O2反应,含ZrO2样品的选择还原活性却较低,表明反应机理不同,而且ZrO2对C2H4的深度氧化有促进作用,但老化后活性下降幅度比不含ZrO2的样品小。  相似文献   

15.
用Langmuir-Blodgett技术制成了附着聚苯乙烯小球的氧化铟锡(InSnO)模板。将此模板水平置于由硝酸锌及柠檬酸组成的前驱体溶胶中,用溶胶-凝胶法制得氧化锌球腔阵列/氧化铟锡电极。采用电沉积法得到普鲁士蓝/壳聚糖杂化膜修饰的氧化锌球腔阵列/氧化铟锡电极。该电极在pH 7.0~8.0的溶液中具有良好的电化学活性,过氧化氢浓度在7.67×10-7~4.72×10-4mol.L-1范围内与相应的电流响应值呈线性关系,检出限(3S/N)为2.4×10-7mol.L-1。测定2.0×10-5mol.L-1过氧化氢溶液时,其相对标准偏差(n=10)为3.8%。  相似文献   

16.
采用并流淤浆混合法制备了一系列具有不同铜锌铝比的铜基甲醇合成催化剂CuO/ZnO/Al2O3,测试了其催化性能(甲醇收率和CO转化率)及物相结构,并对该制备方法进行评价。Cu∶Zn∶Al摩尔比为4∶5∶1 的铜基催化剂显示了最好的催化活性。通过对催化剂前驱物煅烧过程进行DTA分析及对前驱物进行XRD分析表明, 催化剂前驱物的物相与Al2O3的量有关。当Al2O3的量较低时,前驱物的物相以(Cu0.3 Zn0.7)5(CO3)2(OH)6为主;当Al2O3的量较高时,前驱物中物相(Cu0.3Zn0.7)5(CO3)2(OH)6的量下降,而物相Cu2CO3(OH)2的量增加。物相(Cu0.3 Zn0.7)5(CO3)2(OH)6对终态催化剂的活性是十分有利的 。  相似文献   

17.
钛铝载体的合成及负载CuO对NO催化性能研究   总被引:1,自引:0,他引:1  
以TiCl4为原料合成了TiO2/[[alpha]]-Al2O3载体. 在色谱-微反流动法反应装置上考察了CuO/15%(w, 下同)TiO2/[alpha]-Al2O3系列催化剂对NO+CO 的反应性能. 结果表明上述催化剂对NO+CO 反应表现出较好的活性, 其中12%CuO/15%TiO2/[alpha]-Al2O3反应活性最佳. 空气和H2 预处理后, NO 完全转化的温度分别为300C[[deg]]和275C[deg].通过H2-TPR、XRD 和FT-IR 等技术表征, 发现适量TiO2能促进CuO 在钛铝载体上的分散. TPR 结果显示12%CuO/15%TiO2/[alpha]-Al2O3在整个TPR 过程中出现四个还原峰, 琢和酌还原峰分别是钛铝载体表面裸露的TiO2上高度分散的CuO 和晶相CuO 的还原;茁和啄还原峰为钛铝载体上高度分散的CuO 和晶相CuO 的还原. FT-IR实验表明NO和CO 在经H2气氛预处理的催化剂表面上吸附较强, 且生成了N2O 和NO2等物种;NO+CO混合气在经空气和H2预处理的催化剂表面吸附时, 出现了N2O吸收峰, 峰温分别为200C[deg]和150C[deg].  相似文献   

18.
Ce-Al2O3 catalysts prepared by co-precipitation are investigated both in NO oxidation by O2 and in selective catalytic reduction of NO by C2H2(C 2 H 2-SCR).It is found that C2H2-SCR is initiated and controlled by NO oxidation to NO 2 over Al2O3.Ce loading on Al2O3 is almost inactive for NO oxidation below 350 C,since NO2 strongly adsorbs on cerium oxide,leading to the active sites being blocked,which was characterized by temperature-programmed desorption of NO and NO 2 and Fourier transform infrared spectroscopy after NO+O 2 coadsorption over the samples.However,in the case of C2H2-SCR,Ce loading on Al 2 O 3 significantly improves the reaction by accelerating the NO oxidation step in the temperature range of 250-450 C,since the nitrate species produced by NO 2 adsorption is an active intermediate required by C2H 2-SCR.  相似文献   

19.
为了提高MNOx/TiO2催化剂催化氧化NO的活性,在载体TiO2上负载醋酸锰的同时掺杂了一定量的硝酸铈,构成了Ce(1)Mn(3)Ti催化剂,并对催化剂进行XRD、BET和XPS等表征。重点考察了H2O和SO2对催化剂活性的影响,通过FT-IR、SEM和BET等表征手段对毒化前后的催化剂组成及结构进行了分析。结果表明,Ce(1)Mn(3)Ti催化剂具有较好的活性,在空速41 000 h-1、NO体积分数为300×10-6及O2含量10%的条件下,反应温度200℃时NO转化率可达58%,250℃时NO转化率达到最高值85%。单独加入4%H2O使得催化剂活性降低,升高反应温度,H2O对催化剂的影响减弱;同时通入4%H2O和100×10-6SO2,在反应温度250℃时,NO转化率下降并维持在48%左右,停止通入后恢复到61%。H2O和SO2使催化剂活性物种硫酸盐化失活。  相似文献   

20.
The structure and catalytic properties of binary dispersed oxide structures prepared by sequential deposition of VO(x) and MoO(x) or VO(x) and CrO(x) on Al(2)O(3) were examined using Raman and UV-visible spectroscopies, the dynamics of stoichiometric reduction in H(2), and the oxidative dehydrogenation of propane. VO(x) domains on Al(2)O(3) modified by an equivalent MoO(x) monolayer led to dispersed binary structures at all surface densities. MoO(x) layers led to higher reactivity for VO(x) domains present at low VO(x) surface densities by replacing V-O-Al structures with more reactive V-O-Mo species. At higher surface densities, V-O-V structures in prevalent polyvanadates were replaced with less reactive V-O-Mo, leading to lower reducibility and oxidative dehydrogenation rates. Raman, reduction, and UV-visible data indicate that polyvanadates predominant on Al(2)O(3) convert to dispersed binary oxide structures when MoO(x) is deposited before or after VO(x) deposition; these structures are less reducible and show higher UV-visible absorption energies than polyvanadate structures on Al(2)O(3). The deposition sequence in binary Mo-V catalysts did not lead to significant differences in structure or catalytic rates, suggesting that the two active oxide components become intimately mixed. The deposition of CrO(x) on Al(2)O(3) led to more reactive VO(x) domains than those deposited on pure Al(2)O(3) at similar VO(x) surface densities. At all surface densities, the replacement of V-O-Al or V-O-V structures with V-O-Cr increased the reducibility and catalytic reactivity of VO(x) domains; it also led to higher propene selectivities via the selective inhibition of secondary C(3)H(6) combustion pathways, prevalent in VO(x)-Al(2)O(3), and of C(3)H(8) combustion routes that lead to low alkene selectivities on CrO(x)-Al(2)O(3). VO(x) and CrO(x) mix significantly during synthesis or thermal treatment to form CrVO(4) domains. The deposition sequence, however, influences catalytic selectivities and reduction rates, suggesting the retention of some of the component deposited last as unmixed domains exposed at catalyst surfaces. These findings suggest that the reduction and catalytic properties of active VO(x) domains can be modified significantly by the formation of binary dispersed structures. VO(x)-CrO(x) structures, in particular, lead to higher oxidative dehydrogenation rates and selectivities than do VO(x) domains present at similar surface densities on pure Al(2)O(3) supports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号