首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
由溶胶凝胶法合成的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2在水溶液体系中具有优异的高倍率充放电性能,放电时能够输出极高功率密度.XRD表征证明合成的LiNi1/3Co1/3Mn1/3O2材料具有层状α-NaFeO2结构,SEM形貌显示材料的粒径约为500nm,恒电流充放电测试表明LiNi1/3Co1/3Mn1/3O2材料在pH12的2mol·L-1LiNO3溶液中,以2C(0.36A/g)倍率充放时,比容量达到了147mAh/g.如以80C(14.4A/g)、150C(27A/g)和220C(39.6A/g)的倍率充放,材料的比容量仍可达到64mAh/g、33mAh/g和16mAh/g,而全电池的功率密度分别达到2574W/kg、3925W/kg、4967W/kg.其中80C倍率充放,经1000周循环后,容量保持率为90.9%.  相似文献   

2.
放电温度对LiNi3/8Co2/8Mn3/8O2电化学性能的影响   总被引:5,自引:0,他引:5  
采用X射线衍射(XRD)、X射线光电子能谱(XPS)、恒流充放电、循环伏安及交流阻抗法,研究了放电温度对LiNi3/8Co2/8Mn3/8O2的倍率特性、锂离子扩散及电荷传递的影响.结果表明, 提高放电温度可显著改善LiNi3/8Co2/8Mn3/8O2的放电容量与倍率放电性能.尽管温度升高使电荷传递活性与锂离子扩散速度都增加,但电荷传递活化能比锂离子扩散活化能大一倍多,表明电荷传递步骤是其电化学反应控制步骤.温度对其电荷传递的影响大于对锂离子扩散的影响.温度升高,电荷传递速率加快,电化学嵌入-迁出反应加速,是其放电容量与倍率放电特性显著改善的主要原因.  相似文献   

3.
贺勇  唐子龙  张中太 《物理化学学报》2010,26(11):2962-2966
限制纳米电极材料倍率性能的一个重要因素是,在大电流下充放电时,纳米结构可能坍塌,造成容量迅速衰减.通过异价离子的掺杂或第二相的负载有可能弥补纳米材料的这一缺陷.本文以含有Cr2O3的锐钛矿TiO2为原料,通过超声化学-水热法,制备了负载Cr2O3的H2Ti2O5·H2O纳米管.采用X射线衍射(XRD)和透射电镜(TEM)对制得的H2Ti2O5·H2O/Cr2O3纳米管的晶体结构和微观形貌进行了表征和分析.恒流充放电测试显示,H2Ti2O5·H2O/Cr2O3(5%(w,质量分数))纳米管作为锂离子电池阳极材料具有优异的循环稳定性及倍率性能.在150mA·g-1的电流密度下,H2Ti2O5·H2O/Cr2O3纳米管的首次放电容量达到288mAh·g-1;120次循环后,充放电容量仍保持在145mAh·g-1.在1500mA·g-1的电流密度下,首次放电容量为178mAh·g-1;600次循环后,充放电容量保持在80mAh·g-1以上;继续在150mA·g-1电流密度下充放电30个循环,充放电容量达到155mAh·g-1,显示出充放电容量的可回复性.循环伏安测试结果表明,H2Ti2O5·H2O/Cr2O3纳米管的充放电过程由法拉第赝电容反应控制.该一维纳米结构在锂离子电池和非对称电容器领域显示出良好的应用前景.  相似文献   

4.
以共沉淀法合成的前驱体Ni1/3Co2/3-xAlx(OH)2与低共熔锂盐0.38LiOH·H2O-0.62LiNO3制备了锂离子电池正极材料LiNi1/3Co2/3-xAlxO2(x=1/12,1/6,1/3,1/2,7/12).采用X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试对其结构、形貌和电化学性质进行表征.结果表明,LiNi1/3Co2/3-xAlxO2在1/12≤x≤1/3范围内可以保持单一的六方层状α-NaFeO2结构,当Al掺杂量(x)高于1/3时,会出现杂相.其中,LiNi1/3Co1/3Al1/3O2结晶程度最高,阳离子混排效应最小,并且颗粒小而均匀,振实密度可以达到2.88g·cm-3,首次放电容量为151.5mAh·g-1,循环50次后放电容量保持在91.4%,在1C和2C倍率下放电容量仍可达到133.7和120.9mAh·g-1.  相似文献   

5.
闫芳  叶乃清  田华  钟卓洪 《化学通报》2011,74(5):429-433
以硝酸锂、四水合乙酸镍、四水合乙酸钴、四水合乙酸锰、氨水和草酸为原料,通过共沉淀-燃烧法合成了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,采用XRD、SEM和充放电试验对合成产物进行了表征,研究了回火处理对合成产物结构和电化学性能的影响.实验结果表明,嫩烧反应形成的LiNi1/3C1/3Mn31/3O2结...  相似文献   

6.
采用氨蒸发诱导法成功制备出纳米结构LiNi1/3Co1/3Mn1/3O2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、高分辨率透射电镜(HRTEM)、能量分散谱(EDS)和比表面测试等表征手段及恒电流充放电测试研究了其晶体结构、微观形貌和电化学性能.研究表明该方法制备出的材料具有良好的α-NaFeO2层状结构,阳离子混排程度低.纳米片交错堆积而成核桃仁状形貌,片与片之间形成许多纳米孔,而且纳米片的侧面属于{010}活性面,能够提供较多的锂离子的脱嵌通道.在室温下及3.0-4.6 V充放电范围内,该材料在电流密度为0.5C、1C、3C、5C和10C时放电比容量分别为172.90、153.95、147.09、142.16和131.23mAh?g-1.说明其具有优异的电化学性能,非常有潜力用于动力汽车等高功率密度锂离子电池中.  相似文献   

7.
史继诚  徐洪峰  卢璐  高俊 《物理化学学报》2016,32(12):2941-2950
研究了氢溴电池的电池结构、正极氢溴酸和溴电解质浓度、负极的氢气压力、质子交换膜厚度对氢溴电池的性能和电池效率的影响。对氢溴电池结构进行改进,单电池实现了200 mA·cm-2电流密度恒流充放电,电池库伦效率100%。溴电极电化学反应受浓差极化控制,提高氢溴酸浓度,电池充电性能提高,同时,溴在氢溴酸的溶解度增大,电池放电性能也提高,氢溴酸浓度由0.5 mol·L-1提高至1 mol·L-1,电流密度200 mA·cm-2,电池的能量效率和电压效率提高27.9%。氢溴电池充电过程,降低电池负极氢出压力,有利于提高充电性能,但膜透酸严重,放电过程中最佳的氢出压力是维持氢在碳纸憎水催化层的单层吸附,充放电过程氢出压力均为40.0 kPa,电池的能量效率80.2%。膜厚度与膜电阻极化和膜透酸密切相关,充电过程,膜由50.0 μm降至15.0 μm,膜透酸严重,负极电化学活性比表面积下降,电池充电性能降低。膜厚度对放电性能的影响还与电流密度有关,电流密度较低时,膜透酸造成负极电化学比表面积下降居主导地位,50.0 μm Nafion膜放电性能更高;电流密度超过200 mA·cm-2时,膜电阻极化居主导电位,15.0 μm Nafion膜性能更高。采用20.0 μm质子交换膜,在200 mA·cm-2电流密度循环充放电五次,电池的能量效率和电压效率达到85.3%,库伦效率100%。  相似文献   

8.
通过共沉淀法与固相法相结合制备了掺锌的高稳定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2(x=0,0.02,0.05)正极材料.循环伏安(CV)曲线表明Zn掺杂使氧化峰与还原峰的电势差减小到0.09 V,电化学阻抗谱(EIS)曲线表明Zn掺杂使电极的阻抗从266Ω减小到102Ω. Li+嵌入扩散系数从1.20×10-11 cm2·s-1增大到2.54×10-11 cm2· s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以0.3C充放电在较高的截止电压(4.6 V)下比其他两种材料的电化学循环性能更稳定,其第二周的放电比容量为176.2 mAh·g-1,室温下循环100周后容量几乎没衰减;高温(55°C)下充放电循环100周,其放电比容量平均每周仅衰减0.20%,远小于其他两种正极材料(LiNi1/3Co1/3Mn1/3O2平均每周衰减0.54%;Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰减0.38%). Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以3C充放电时其放电比容量可达142 mAh·g-1,高于其他两种正极材料.电化学稳定性的提高归因于Zn掺杂后减小了电极的极化和阻抗,增大了锂离子扩散系数  相似文献   

9.
采用硬模板法合成了具有六方排列的平行圆柱形有序孔道介孔α-氧化铁(α-Fe_2O_3),并将其用作锂离子、钠离子电池的负极材料。所制备的介孔α-Fe_2O_3凭借其独特的有序介孔结构,有效缓解电极在充放电过程中的体积效应,提高了电解液浸润性,促进锂/钠离子的转移和传输,从而在锂离子及钠离子电池中均表现出优异的电化学性能。作为锂离子电池负极时,其首圈放电比容量为983.9 mAh·g~(-1)。经过100次循环后,其放电比容量为1 188.0 mAh·g~(-1)。在钠离子电池中,其首圈放电比容量为687.7mAh·g~(-1)。经过50次循环后,仍有316.9 mAh·g~(-1)的放电比容量。  相似文献   

10.
采用一步固相煅烧工艺制备了碳纳米管原位封装Ni3S2纳米颗粒(Ni3S2@CNT),并研究了其作为钠离子电池(SIBs)负极材料的电化学性能. 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、循环伏安测试、恒流充放电以及交流阻抗等研究了Ni3S2@CNT的物相结构、形貌特征以及电化学性能. 电化学测试表明,材料在100 mA·g -1电流密度下,放电容量可以达到541.6 mAh·g -1,甚至在2000 mA·g -1的大电流密度下其放电比容量也可以维持在274.5 mAh·g -1. 另外,材料在100 mA·g -1电流密度下,经过120周充放电循环后其放电和充电比容量仍然可以保持在374.5 mAh·g -1和359.3 mAh·g -1,说明其具有良好倍率性能和循环稳定性能. 良好的电化学性能归因于这种独特的碳纳米管原位封装Ni3S2纳米颗粒结构. 碳纳米管不但可以提高复合材料的导电性,也可以缓冲Ni3S2纳米颗粒在反复充放电过程中产生的体积膨胀效应,明显改善了Ni3S2@CNT负极复合材料的电化学性能.  相似文献   

11.
Volume expansion and poor conductivity are two major obstacles that hinder the pursuit of the lithium‐ion batteries with long cycling life and high power density. Herein, we highlight a misfit compound PbNbS3 with a soft/rigid superlattice structure, confirmed by scanning tunneling microscopy and electrochemical characterization, as a promising anode material for high performance lithium‐ion batteries with optimized capacity, stability, and conductivity. The soft PbS sublayers primarily react with lithium, endowing capacity and preventing decomposition of the superlattice structure, while the rigid NbS2 sublayers support the skeleton and enhance the migration of electrons and lithium ions, as a result leading to a specific capacity of 710 mAh g?1 at 100 mA g?1, which is 1.6 times of NbS2 and 3.9 times of PbS. Our finding reveals the competitive strategy of soft/rigid structure in lithium‐ion batteries and broadens the horizons of single‐phase anode material design.  相似文献   

12.
Bo Wang  Lin Gu  Di Zhang  Wei Wang 《化学:亚洲杂志》2019,14(18):3181-3187
Li4Ti5O12 is a promising anode for lithium‐ion batteries due to its zero‐strain properties. However, its low conductivity has greatly affected its rate performance. At the same time, the electrolyte decomposition during cycling also needs to be solved, especially at low cut‐off voltage. Herein, using a high‐throughput two‐step method, we synthesized Zr‐doped LTO modified by mesoporous LiBaF3 nanoparticles for alkali‐ion storage. The doping of Zr can enhance the electronic conductivity and facilitate the rate performance. Meanwhile, the coating of mesoporous LiBaF3 nanoparticles can form a mesoporous surface with large pore size (ca. 3–10 nm), which can benefit the alkali ion diffusion and simultaneously restrain the formation of an excess solid electrolyte interface to a reasonable range. The optimized material is used as an advanced anode for both lithium‐ion and potassium‐ion batteries, and good battery behavior including high‐rate performance and high stability is achieved.  相似文献   

13.
A new super‐concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra‐high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li‐ion cell based on LiMn2O4 and carbon‐coated TiO2 delivered the unprecedented energy density of 100 Wh kg?1 for rechargeable aqueous Li‐ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the “water‐in‐salt” electrolyte further pushed the energy densities of aqueous Li‐ion cells closer to those of the state‐of‐the‐art Li‐ion batteries.  相似文献   

14.
Liquid state soft packed LiFePO4 cathode lithium ion cells with capacity of 2 Ah were fabricated using graphite or Li4Ti5O12 as negative electrodes to investigate the 3 C/10 V overcharge characteristics at room temperature. The LiFePO4/Li4Ti5O12 cell remained safe after the 3 C/10 V overcharge test while the LiFePO4/graphite cell went to thermal runaway. Temperature and voltage variations during overcharge were recorded and analyzed. The cells after overcharge were disassembled to check the changes of the separated cell components. The results showed that the Li4Ti5O12 as anode active material for LiFePO4 cell showed obvious safety advantage compared with the graphite anode. The lithium ionic diffusion models of Li4Ti5O12 anode and graphite anode were built respectively with the help of morphology characterizations performed by scanning electron microscopy. It was found that the different particle shapes and lithium ionic diffusion modes caused different lithium ionic conductivities during overcharge process.  相似文献   

15.
A 3D structured composite of carbon nanofibers@MnO2 on copper foil is reported here as a binder free anode of lithium ion batteries, with high capacity, fast charge/discharge rate and good stability. Carbon nanofiber yarns were synthesized directly over copper foil through a floating catalyst method. The growth of carbon nanofiber yarns was significantly enhanced by mechanical polishing of the copper foils, which can be attributed to the increased surface roughness and surface area of the copper foils. MnO2 was then grown over carbon nanofibers through spontaneous reduction of potassium permanganate by the carbon nanofibers. The obtained composites of carbon nanofibers@MnO2 over copper foil were tested as an anode in lithium ion batteries and they show superior electrochemical performance. The initial reversible capacity of carbon nanofibers@MnO2 reaches up to around 998 mAh·g?1 at a rate of 60 mmA·g?1 based on the mass of carbon nanofibers and MnO2. The carbon nanofibers@MnO2 electrodes could deliver a capacity of 630 mAh·g?1 at the beginning and maintain a capacity of 440 mmAh·g?1 after 105 cycles at a rate of 600 mA·g?1. The high initial capacity can be attributed to the presence of porous carbon nanofiber yarns which have good electrical conductivity and the MnO2 thin film which makes the entire materials electrochemically active. The high cyclic stability of carbon nanofibers@MnO2 can be ascribed to the MnO2 thin film which can accommodate the volume expansion and shrinking during charge and discharge and the good contact of carbon nanofibers with MnO2 and copper foil.  相似文献   

16.
Although a lithium metal anode has a high energy density compared with a carbon insertion anode, the poor rechargeability prevents the practical use of anode materials. A lithium electrode coated with Li2CO3 was prepared as a negative electrode to enhance cycleability through the control of the solid electrolyte interface (SEI) layer formation in Li secondary batteries. The electrochemical characteristics of the SEI layer were examined using chronopotentiometry (CP) and impedance spectroscopy. The Li2CO3-SEI layer prevents electrolyte decomposition reaction and has low interface resistance. In addition, the lithium ion diffusion in the SEI layer of the uncoated and the Li2CO3-coated electrode was evaluated using chronoamperometry (CA).  相似文献   

17.
本文以废旧锂电池为原料,经过解体分选、硫酸浸出、除杂净化等一系列工序,回收得到含镍钴锰的混合溶液,采用氢氧化物共沉淀法制备LiCo1/3Ni1/3Mn1/3O2正极材料。分别采用XRD,TG/DSC,SEM对其进行表征,并通过恒电流充放电测试和循环性能测试对材料的电化学性能进行分析。结果表明,合成得到的LiCo1/3Ni1/3Mn1/3O2正极材料具有典型的层状结构,并呈现球形或类球形的形貌。在0.1C,电压范围为2.75~4.3 V的条件下,经恒流充放电测试,它的首次放电容量为136.5 mAh.g-1,经过30个循环后,放电容量为124.9 mAh.g-1,容量保持率高达91.5%,表现出较优异的电化学性能。  相似文献   

18.
The wide use of lithium ion batteries (LIBs) has created much waste, which has become a global issue. It is vital to recycle waste LIBs considering their environmental risks and resource characteristics. Anode graphite from spent LIBs still possess a complete layer structure and contain some oxygen-containing groups between layers, which can be reused to prepare high value-added products. Given the intrinsic defect structure of anode graphite, copper foils in LIB anode electrodes, and excellent properties of graphene, graphene oxide–copper composite material was prepared in this work. Anode graphite was firstly purified to remove organic impurities by calcination and remove lithium. Purified graphite was used to prepare graphene oxide–copper composite material after oxidation to graphite oxide, ultrasonic exfoliation to graphene oxide (GO), and Cu2+ adsorption. Compared with natural graphite, preparing graphite oxide using anode graphite consumed 40% less concentrated H2SO4 and 28.6% less KMnO4. Cu2+ was well adsorbed by 1.0 mg L?1 stable GO suspension at pH 5.3 for 120 min. Graphene oxide–copper composite material could be successfully obtained after 6 h absorption, 3 h bonding between GO and Cu2+ with 3/100 of GO/CuSO4 mass ratio. Compared to CuO, graphene oxide–copper composite material had better catalytic photodegradation performance on methylene blue, and the electric field further improved the photodegradation efficiency of the composite material.  相似文献   

19.
钟辉  许惠 《化学学报》2007,65(2):147-151
采用共沉淀-喷雾造粒法制备前驱体, 于750 ℃在空气中煅烧20 h合成出层状Li(Ni1/3Co1/3Mn1/3)O2正极材料, 并用XRD, SEM, 粒度分析和电性能测试考察了所得材料结构、形貌及电化学性能. 本层状Li(Ni1/3Co1/3Mn1/3)O2正极材料具有α-NaFeO2结构, 六方晶系, R3m空间群, 其晶胞参数为a=0.2865 nm, c=1.4238 nm. 当材料分别在2.8~4.2, 2.8~4.5 V间进行充放电时, 其首次放电容量分别为173.5和185.4 mAh•g-1, 首次充放电效率分别为90%和83.8%, 40次循环后容量保持率分别为96%和84%.  相似文献   

20.
In this paper, we report an advanced long‐life lithium ion battery, employing a Pyr14TFSI‐LiTFSI non‐flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn‐C) nanocomposite anode, and a layered LiNi1/3Co1/3Mn1/3O2 (NMC) cathode. The IL‐based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel–Tammann–Fulcher (VTF) trend. Lithium half‐cells employing the Sn‐C anode and NMC cathode in the Pyr14TFSI‐LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn‐C electrodes are combined into a cathode‐limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g?1 and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL‐based lithium ion cells are suitable batteries for application in electric vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号