首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The synthesis of filled skutterudite compounds (Ce or Y)yFexCo4-xSb12, through a solid state reaction using chloride of Ce or Y, high purity powder of Co, Fe, and Sb as starting materials, was investigated. (Ce or Y)yFexCo4-xSb12 (x = 0 1.0,y = 0 0.15) compounds were obtained at 850 1 123 K. The results of Rietveld analysis demonstrate that (Ce or Y)yFexCo4-xSb12 synthesized by a solid state reaction possesses a filled skutterudite structure. The filling fraction of Ce or Y obtained by Rietveld analysis agrees well with the composition obtained by chemical analysis. The lattice constant of CeyFexCo4-xSb12 increases with increasing substitution of Fe at Co sites, and with an increasing Ce filling fraction in the Sb-dodecahedron voids. The lattice thermal conductivity of (Ce or Y)yFexCo4-xSb12 decreases significantly with an increasing Ce or Y filling fraction in the voids and with substitution of Fe at Co sites.  相似文献   

2.
以Sm作为填充原子,用熔融法结合放电等离子快速烧结技术(SPS)制备出了单相的SmyFexCo4-xSb12化合物。Rietveld精确化结果表明:所制备的SmyFexCo4-xSb12化合物具有填充式skutterudite结构,Sm的热振动参量(B)比Sb和Fe/Co的大,说明Sm在SmyFexCo4-xSb12化合物中具有扰动效应。热电性能测试结果表明:随着Sm原子填充分数的增加,SmyFexCo4-xSb12化合物的电导率减小;Seebeck系数增加,在填充分数为0.38时达最大值;热导率减小,在填充分数为0.32时最低。Sm0.32Fe1.47Co2.53Sb12化合物在750K时具有最大热电性能指数ZTmax值为0.68。  相似文献   

3.
A series of samples ((AB)(x)(CD)(y))(z) were prepared containing both short repeat units (AB and CD) and long repeat units ((AB)(x)(CD)(y)), where the short repeat units were designed to have the composition appropriate to form square M(4)Sb(12) skutterudites (M = Fe, Co, or Ir; square = vacancy, La, or Y). X-ray diffraction and reflectivity were used to follow the evolution of the films from amorphous, layered materials to crystalline skutterudite superlattices as a function of annealing temperature and time. In all cases, the short repeat units interdiffused and crystallized the expected skutterudite, while the long repeat period persisted after annealing. The skutterudites crystallize with random crystallographic orientation with respect to the substrate. The observed splitting of the peaks in the high-angle diffraction data from the IrSb(3)/CoSb(3) sample indicates the formation of a novel superlattice structure with each grain having a random crystallographic orientation of the skutterudite lattice with respect to the superlattice direction.  相似文献   

4.
采用柠檬酸溶胶凝胶燃烧合成法制备了一系列组成的(Y,Tb)3Al5O12:Ce3+,Sm3+荧光粉。通过X射线衍射、荧光光谱研究了不同Sm3+离子共掺杂浓度下(Y,Tb)AG:Ce3+荧光粉的晶体结构及光致发光性能。Rietveld全图拟合(Rietveld method of wholepattern fitting)结果表明:掺杂后样品仍为纯立方石榴石相,随着Sm3+离子共掺杂浓度的增加,样品的晶胞参数增大。在467 nm激发下,激发能由Ce3+离子向Sm3+离子单向传递,从而在617nm处出现红光发射。Tb3+离子取代不利于Ce3+离子与Sm3+离子的能量传递,同时Ce3+离子受更强的晶体场作用及与O2-离子间增强的共价性使发射主峰红移,Sm3+掺杂的TAG:Ce体系中,激发能由敏化剂Ce3+离子向激活剂Sm3+离子的传递路径包括5d→4f2F5/2,7/2(Ce3+)和7F6→5D4(Tb3+)到4G5/2→6H7/2(Sm3+)两部分。  相似文献   

5.
The nucleation energy of a series of La(x)Fe(y)Sb(z) modulated elemental reactants was measured as a function of the Fe/Sb ratio over a large composition range while holding the La content constant. The nucleation energy of the ternary compound La(0.5)Fe(4)Sb(12) with the skutterudite crystal structure was found to depend very strongly on the Fe/Sb ratio in the modulated elemental reactant, with a higher nucleation energy as the Fe/Sb ratio is moved away from the 1:3 stoichiometric value. When the results of this study are compared with those from Fe(y)Sb(z) modulated reactants, the addition of lanthanum was found to suppress the nucleation of FeSb(2), thereby broadening the Fe/Sb composition range in which the ternary skutterudite compound La(x)Fe(4)Sb(12) nucleates. This suppression of nucleation of a binary phase on addition of a ternary component to an amorphous intermediate is in agreement with theoretical arguments. The observed suppression of nucleation also provides rational for the observed nucleation of metastable ternary and higher-order compounds from homogeneous amorphous reactants.  相似文献   

6.
Nanocrystalline Ce(1)(-)(x)Ti(x)O(2) (0 < or = x < or = 0.4) and Ce(1-)(x)(-)(y)Ti(x)Pt(y)O(2)(-)(delta) (x = 0.15, y = 0.01, 0.02) solid solutions crystallizing in fluorite structure have been prepared by a single step solution combustion method. Temperature programmed reduction and XPS study of Ce(1)(-)(x)Ti(x)O(2) (x = 0.0-04) show complete reduction of Ti(4+) to Ti(3+) and reduction of approximately 20% Ce(4+) to Ce(3+) state compared to 8% Ce(4+) to Ce(3+) in the case of pure CeO(2) below 675 degrees C. The substitution of Ti ions in CeO(2) enhances the reducibility of CeO(2). Ce(0.84)Ti(0.15)Pt(0.01)O(2)(-)(delta) crystallizes in fluorite structure and Pt is ionically substituted with 2+ and 4+ oxidation states. The H/Pt atomic ratio at 30 degrees C over Ce(0.84)Ti(0.15)Pt(0.01)O(2)(-)(delta) is 5 and that over Ce(0.99)Pt(0.01)O(2)(-)(delta) is 4 against just 0.078 for 8 nm Pt metal particles. Carbon monoxide and hydrocarbon oxidation activity are much higher over Ce(1-)(x)(-)(y)Ti(x)Pt(y)O(2) (x = 0.15, y = 0.01, 0.02) compared to Ce(1)(-)(x)Pt(x)O(2) (x = 0.01, 0.02). Synergistic involvement of Pt(2+)/Pt degrees and Ti(4+)/Ti(3+) redox couples in addition to Ce(4+)/Ce(3+) due to the overlap of Pt(5d), Ti(3d), and Ce(4f) bands near E(F) is shown to be responsible for improved redox property and higher catalytic activity.  相似文献   

7.
Starting from elemental powder mixtures, single-phase LaxCo3.6Ni0.4Sb12(x=0, 0.1, 0.4, 0.6)-filled skutterudites were synthesized via the route of mechanical alloying-hot pressing (MA-HP) in this paper. With increasing of La fraction, the lattice spacing of filled skutterudite phase increases and its variation follows the Vegard's law. The magnitude of the Seebeck coefficient and electrical resistivity show slight increases with increasing of La filling fraction; thermal conductivity of the filled skutterudite decreases and the resultant figure of merit increases with increase of La filling fraction. The as-HPed filled skutterudite has a composite nanocrystalline microstructure, which includes some coral-like clusters with relatively large spoke-like grains about 300 nm in length and a superfine equiaxial nanocrystalline matrix with an average grain size of about 50 nm. The coral-like cluster corresponds to the prime filled skutterudite formed directly by MA, while the filled skutterudite formed during hot pressing, which has the same nucleation condition and experiences less grain growth, develops equiaxially into the superfine nanocrystalline matrix.  相似文献   

8.
Vanadyl ion substituted LiFePO(4) cathodes of the form LiFe(1-x)(VO)(x)PO(4) for 0 ≤ x ≤ 0.25 have been synthesized by a rapid microwave-solvothermal process at <300 °C within 10 min. Clear evidence of vanadyl ion substitution is demonstrated, despite a large size difference between Fe(2+) and (VO)(2+), by characterizing the products structurally, spectroscopically, and electrochemically. The vanadyl ion substitution is accompanied by the formation of iron vacancies in the lattice and Fe(3)O(4) impurity phase, which increases with increasing (VO)(2+) substitution for Fe(2+) and could be removed with a magnetic stir bar. The formation of iron vacancies, along with the oxidation of some Fe(2+) to Fe(3+) to maintain charge neutrality, results in a decrease in the unit cell volume with increasing x despite the substitution of larger (VO)(2+) for Fe(2+). Charge-discharge data of the vanadyl ion substituted samples suggest suppression of the two-phase plateau behavior that is characteristic of LiFePO(4). Electrochemical data collected without any carbon coating reveal that the capacity and rate capability decreases, but the capacity retention improves with (VO)(2+) substitution.  相似文献   

9.
C Liu  H Liang  X Kuang  J Zhong  S Sun  Y Tao 《Inorganic chemistry》2012,51(16):8802-8809
A series of Ca(3)La(3(1-x))Ce(3x)(BO(3))(5) phosphors were prepared by a high-temperature solid-state reaction technique. Rietveld refinement was performed using the powder X-ray diffraction (XRD) data, which shows occupation of Ce(3+) on both Ca(2+) and La(3+) sites with a preferred location on the La(3+) site over the Ca(2+) site. The prepared samples contain minor second phase LaBO(3) with contents of ~0.64-3.27 wt % from the Rietveld analysis. LaBO(3):1%Ce(3+) was prepared as a single phase material and its excitation and emission bands were determined for identifying the influence of impurity LaBO(3):Ce(3+) luminescence on the spectra of the Ca(3)La(3(1-x))Ce(3x)(BO(3))(5) samples. The luminescence properties of Ca(3)La(3(1-x))Ce(3x)(BO(3))(5) samples under vacuum ultraviolet (VUV) and UV excitation were investigated, which exhibited two-center luminescence of Ce(3+), assigned to the Ce(1)(3+) center in the La(3+) site and Ce(2)(3+) center in the Ca(2+) site, taking into account the spectroscopic properties and the Rietveld refinement results. The influences of the doping concentration and the excitation wavelength on the luminescence of Ce(3+) in Ca(3)La(3(1-x))Ce(3x)(BO(3))(5) are discussed together with the decay characteristics.  相似文献   

10.
Bulk $ {\hbox{B}}{{\hbox{a}}_x}{\hbox{S}}{{\hbox{r}}_{{1} - x}}{\hbox{C}}{{\hbox{o}}_y}{\hbox{F}}{{\hbox{e}}_{{1} - y}}{{\hbox{O}}_{{3} - \delta }} $ compositions (BSCF) were synthesized by the solid-state reaction method. The electrical conductivity of ceramic bars was measured using a dc four-probe method as a function of temperature in air up to 970?°C. All compositions showed thermally activated p-type semi-conductivity up to ~450?°C and then a transition to metal-like conductivity. The small-polaron hopping p-type semi-conductivity depends on the oxygen nonstoichiometry, which increases with increasing temperature. Metal-like conductivity is attributed to the overlap of the transition metal d-electron orbitals with the oxygen p-orbitals. Strontium-rich compositions show higher conductivity. The Co/Fe ratio does not influence much the p-type semi-conduction. Iron-rich compositions revealed more metal-like conduction behavior. The degree of overlap between transition metal d-orbitals and oxygen p-orbitals depends on the Ba/Sr as well as on the Co/Fe ratios.  相似文献   

11.
Substitutional solid solutions of metal hexacyanometalates in which low-spin iron(III) and cobalt(III) ions populate the carbon-coordinated sites were synthesized and studied by powder diffraction including Rietveld refinement, cyclic voltammetry of immobilized microparticles, diffuse reflection vis-spectrometry, and magnetization techniques. The continuous solid solution series of potassium copper(II), potassium nickel(II), and iron(III) [(hexacyanoferrate(III))(1-x)(hexacyanocobaltate(III))(x)] show that the substitution of low-spin iron(III) by cobalt(III) in the hexacyanometalate units more strongly affects the formal potentials of the nitrogen-coordinated copper(II) and high-spin iron(III) ions than those of the remaining low-spin iron(III) ions. In the case of copper(II) and iron(III) [(hexacyanoferrate(III))(1-x)(hexacyanocobaltate(III))(x)] the peak currents decrease much more than can be explained by stoichiometry, indicating that the charge propagation is slowed by the substitution of low-spin iron(III) by cobalt(III). The Rietveld refinement of all compounds confirmed the structure initially proposed by Keggin for Prussian blue and contradicts the structure described later by Ludi. The dependencies of lattice parameters on composition exhibit in all series of solid solutions studied similar, although small, deviations from ideality, which correlate with the electrochemical behavior. Finally, a series of solid solutions of the composition KNi(0.5)(II)Cu(0.5)(II)[Fe(III)(CN)(6)](1-x)[Co(III)(CN)(6)](x), where both the nitrogen- and carbon-coordinated metal ions are mixed populated and were synthesized and characterized. These are the first examples of solid solutions of metal hexacyanometalates with four different metal ions, where both the nitrogen- and the carbon-coordinated sites possess a mixed population.  相似文献   

12.
The atomistic structure, energetics, and electronic structure of single-substitutional Ce and La defects and double-substitutional Ce-La defects in Ce,La-codoped yttrium aluminum garnet (YAG) Y(3)Al(5)O(12) have been studied by means of first-principles periodic boundary conditions density functional theory calculations. Single substitution of Y by Ce or by La produces atomistic expansions around the impurities, which are significantly smaller than the ionic radii mismatches and the overall lattice distortions are found to be confined within their second coordination spheres. In double-substitutional defects, the impurities tend to be as close as possible. La-codoping Ce:YAG provokes an anisotropic expansion around Ce defects. The Ce impurity introduces 4f occupied states in the 5.0 eV computed gap of YAG, peaking 0.25 eV above the top of the valence band, and empty 4f, 5d, and 6s states starting at 3.8 eV in the gap and spreading over the conduction band. La-codoping produces very small effects on the electronic structure of Ce:YAG, the most visible one being the decrease in covalent bonding with one of the oxygen atoms, which shifts 0.05 ? away from Ce and gets 0.04 ? closer to La in the most stable Ce-La double-substitutional defect.  相似文献   

13.
Ce(x)Zr(1)(-)(x)O(2) solid solutions deposited over silica surface were investigated by X-ray diffraction (XRD), Raman spectroscopy (RS), and high-resolution transmission electron microscopy (HREM) techniques in order to understand the role of silica support and the temperature stability of these composite oxides. For the purpose of comparison, an unsupported Ce(x)Zr(1)(-)(x)O(2) was also synthesized and subjected to characterization by various techniques. The Ce(x)Zr(1)(-)(x)O(2)/SiO(2) (CZ/S) (1:1:2 mole ratio based on oxides) was synthesized by depositing Ce(x)Zr(1)(-)(x)O(2) solid solution over a colloidal SiO(2) support by a deposition precipitation method and unsupported Ce(x)Zr(1)(-)(x)O(2) (CZ) (1:1 mole ratio based on oxides) was prepared by a coprecipitation procedure, and the obtained catalysts were subjected to thermal treatments from 773 to 1073 K. The XRD measurements disclose the presence of cubic phases with the composition Ce(0.75)Zr(0.25)O(2) and Ce(0.6)Zr(0.4)O(2) in CZ samples, while CZ/S samples possess Ce(0.75)Zr(0.25)O(2), Ce(0.6)Zr(0.4)O(2), and Ce(0.5)Zr(0.5)O(2) in different proportions. The crystallinity of these phases increased with increasing calcination temperature. The cell a parameter estimations indicate contraction of ceria lattice due to the incorporation of zirconium cations into the CeO(2) unit cell. Raman measurements indicate the presence of oxygen vacancies, lattice defects, and displacement of oxygen ions from their normal lattice positions in both the series of samples. The HREM results reveal, in the case of CZ/S samples, a well-dispersed nanosized Ce-Zr-oxides over the surface of amorphous SiO(2). The structural features of these crystals as determined by digital diffraction analysis of experimental images reveal that the Ce-Zr-oxides are mainly in the cubic geometry and exhibit high thermal stability. Oxygen storage capacity measurements by a thermogravimetric method reveal a substantial enhancement in the oxygen vacancy concentration of CZ/S sample over the unsupported CZ sample.  相似文献   

14.
纳米Ce1-xCoxO2-δ固溶体的水热合成及表征   总被引:1,自引:0,他引:1  
采用水热方法, 在络合剂及氧化剂的辅助下合成出传统方法难以合成的Ce1-xCoxO2-δ固溶体. XRD结果表明, Ce1-xCoxO2-δ固溶体具有立方萤石结构; 产物的平均粒度约为4 nm. 小半径、低价态Co离子的掺杂导致晶格收缩. 结合XRD和Raman表征结果确定固溶体的固溶限约为x=0.06. 紫外光谱分析结果表明, Co离子以混合价态(+2, +3)存在于CeO2晶格中, 随着钴掺杂量的增大, 带隙逐渐蓝移. 低于固溶限样品的室温体相电导率随着钴含量增大而提高.  相似文献   

15.
Nanocrystalline Ce(1-x)Fe(x)O(2-δ) (0 ≤ x ≤ 0.45) and Ce(0.65)Fe(0.33)Pd(0.02)O(2-δ) of ~4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce(1-x)Fe(x)O(2-δ) (0 ≤ x ≤ 0.45) and Ce(0.65)Fe(0.33)Pd(0.02)O(2-δ) crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe(3+) ion in CeO(2), lattice oxygen is activated and 33% Fe substituted CeO(2)i.e. Ce(0.67)Fe(0.33)O(1.835) reversibly releases 0.31[O] up to 600 °C which is higher or comparable to the oxygen storage capacity of CeO(2)-ZrO(2) based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd(2+/0)(0.89 V) and Fe(3+/2+) (0.77 V) with Ce(4+/3+) (1.61 V), Pd ion accelerates the electron transfer from Fe(2+) to Ce(4+) in Ce(0.65)Fe(0.33)Pd(0.02)O(1.815), making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce(0.65)Fe(0.33)Pd(0.02)O(1.815) is found to be as low as 38 kJ mol(-1). Ce(0.67)Fe(0.33)O(1.835) and Ce(0.65)Fe(0.33)Pd(0.02)O(1.815) have also shown high activity for the water gas shift reaction. CO conversion to CO(2) is 100% H(2) specific with these catalysts and conversion rate was found to be as high 27.2 μmoles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce(0.65)Fe(0.33)Pd(0.02)O(1.815).  相似文献   

16.
The effect of M(II) substitution on the magnitude of the negative thermal expansion (NTE) behavior within a series of Prussian Blue analogues, M(II)Pt(IV)(CN)(6) for M(II) = Mn, Fe, Co, Ni, Cu, Zn, Cd, has been investigated using variable-temperature powder X-ray diffraction (100-400 K). The NTE behavior varies widely with M(II) substitution, from near zero thermal expansion in NiPt(CN)(6) (alpha = dl/l dT = -1.02(11) x 10(-)(6) K(-)(1)) up to a maximum in CdPt(CN)(6) (alpha = -10.02(11) x 10(-)(6) K(-)(1)). The trend in the magnitude of the NTE behavior, with increasing atomic number (Z) of the M(II) ion, follows the order Mn(II) > Fe(II) > Co(II) > Ni(II) < Cu(II) < Zn(II) < Cd(II), which correlates with the trends for M(II) cation size, the lattice parameter, and structural flexibility as indicated by the temperature-dependent structural refinements and Raman spectroscopy. Analysis of the temperature dependence of the average structures suggests that the differences in the thermal expansion are due principally to the different strengths of the metal-cyanide binding interaction and, accordingly, the different energies of transverse vibration of the cyanide bridge, with enhanced NTE behavior for more flexible lattices.  相似文献   

17.
Nguyen TD  Dinh CT  Do TO 《Inorganic chemistry》2011,50(4):1309-1320
Undoped and cerium doped LaCO(3)OH annular-shaped nanoarchitectures with high specific surface area have been fabricated via the thermolysis of Ce(x)La(1-x)(oleate)(3) (x = 0-20 mol %) complexes in a toluene-water system containing tert-butylamine/oleylamine. The products exhibit 400 nm-sized monodisperse annular-shaped nanoarchitectures, which are constituted of 3-5 nm-sized primary particles. A possible mechanism of the reaction of Ce(x)La(1-x)(oleate)(3) and tert-butylamine for the formation of annular-shaped Ce(x)La(1-x)CO(3)OH nanoarchitectures is proposed. The thermal conversion of Ce(x)La(1-x)CO(3)OH to Ce(x)La(1-x)(CO(3))O(2) at 600 °C, to Ce(x)La(1-x)(OH)(3) at 800 °C, final to (Ce(x)La(1-x))(2)O(3-δ) at 900 °C were employed, while the original morphology was essentially unchanged. The dopant concentration was varied from 5 to 20 of cerium ions per LaCO(3)OH nanoparticle. The X-ray diffraction (XRD) results reveal that the cerium dopant could enter easily into the LaCO(3)OH structural lattice, whereas copper could unlikely enter into their lattice because of their large ionic radius difference. The cerium oxidation state was controlled by changing doping concentration. The X-ray photoelectron spectroscopy (XPS) results reveal that only one Ce(3+) oxidation state is in the as-synthesized Ce(x)La(1-x)CO(3)OH samples with cerium concentration ranging from 5 to 20 mol %, whereas both 3+ and 4+ ones coexisted in 20 mol % Ce:LaCO(3)OH structure. Remarkable luminescence emission intensity enhancement of 1.5-9.0 times were observed for Ce(x)La(1-x)CO(3)OH samples with cerium concentration ranging from 5 to 20 mol %, after doping with an undoped LaCO(3)OH.  相似文献   

18.
The nanoreactors were fabricated by reacting amphiphilic quaternary ammoniums and polyoxoperoxometalates Kn[PW12-xTix- O40-x(O2x](x=1,2 and 3;n = 5,7 and 9)(K5[PW11TiO39(O2)],K7[PW10Ti2O38(O22]and K9[PW9Ti3O37(O23]).Fourier transform infrared spectroscopy(FT-IR),transmission electron microscopy(TEM) were used to characterize the resulting samples. This kind of nanocatalysts could promote NH4SCN’ degradation into simple inorganic compounds such as SO42-,HCO3- and NO3- only using oxygen as an oxidant under room conditions.  相似文献   

19.
稀土添加剂对超细ZrO2织构、结构的影响   总被引:1,自引:0,他引:1  
Pure zirconia and zirconia containing Y or Ce were prepared by Supercritical Drying Method (SCD) followed by calcination in air at temperature up to 700℃. It was found that the zirconia containing Y or Ce possessed much higher specific surface area and larger pore volume than that of pure zirconia. The BET surface area of 3.4Y2O3-96.6ZrO2 without calcination and that calcined at 700℃ were 376.2 m2﹒g-1 and 80.0 m2﹒g-1 respectively, while the corresponding values of pure zirconia were 248.0 m2 ﹒g-1 and 47.8 m2﹒g-1 respectively. It was postulated that the better textural properties of zirconia containing Y or Ce were resulted from preventing zirconia particles sintering in the presence of Y or Ce additive. All of these samples made by SCD had a well-developed mesoporous texture.  相似文献   

20.
采用共沉淀法制备了Ce0.1+xTi0.5-xAl0.2Y0.1La0.1O1.8(0≤x≤0.4)材料, 并对所制备的材料进行了X射线衍射(XRD)和X射线光电子能谱(XPS)的表征, 测定了材料的比表面积(BET法)和储氧量(OSC), 同时采用氢气程序升温还原(H2-TPR)和氨气程序升温脱附(NH3-TPD)研究了材料的还原性能和表面酸性. 研究结果表明, Ce/Ti摩尔比大于1∶2的材料能形成立方萤石结构的固溶体, Ce/Ti摩尔比为1时, 材料表面Ce4+/Ce3+摩尔比达到最大; 随着Ce/Ti摩尔比的增大, 材料的储氧能力先增大后减小, 而TPR还原峰温则是先减小后增大, 当Ce/Ti摩尔比为1时, 材料的储氧量达到最大, 为660 μmol/g; 还原峰峰温最低, 为616 ℃. 以制备的材料为载体制备了一系列Pt/Ce0.1+xTi0.5-xAl0.2Y0.1La0.1O1.8三效催化剂, 并对催化剂进行了活性评价. 活性测试结果表明, 以Ce/Ti比为1的载体材料制成的催化剂对C3H8, CO和NO的起燃温度分别为236, 147和228 ℃, 表现出了优异的温度特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号