首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
采用锡金属为阳极,在无隔膜电解槽中,电化学溶解锡于乙二醇甲醚中制备得到纳米SnO2前驱体Sn(OCH2CH2OCH3)4,将电解液直接水解经溶胶-凝胶法制备纳米SnO2,前驱体通过拉曼和红外光谱进行表征.纳米SnO2采用X射线粉末衍射(XRD)和透射电子显微镜(TEM)进行表征.实验表明,电解合成的Sn(OCH2CH2OCH3)4能够溶解于乙醇中, 适宜作为溶胶-凝胶(sol-gel)法制备纳米SnO2的原料,制得的纳米SnO2经600 ℃煅烧后呈球形单分散结构,晶型为四方锡石型, 比表面为62.58 m2·g-1,平均粒径在(10.0±0.4) nm左右.产率为89.3%,电流效率为86.9%.  相似文献   

2.
碳纳米管/氧化锌纳米复合材料的制备及其形貌控制   总被引:4,自引:0,他引:4  
0引言碳纳米管(CNT)优良的力学、电学、热学性能使其在材料、储能、传感等许多领域都有广泛的应用前景,近年来,以碳纳米管为载体制备的纳米复合材料因其独特的应用潜力而受到广泛关注:彭峰等[1]用FeSO4-H2O2体系修饰碳纳米管,成功地制备了由碳纳米管负载的Fe2O3催化剂;Chen等[2]用溶胶凝胶法制备了CNT/SnO复合材料,作为Li离子电池阴极材料,测试表明它的电化学性能比单独的CNT和SnO材料都有所增强;Jitianu等[3]用溶胶凝胶和水热方法得到不同形貌的TiO2/CNT复合结构,这种新型的纳米复合材料在光催化方面有着重要的应用前景。纳米Z…  相似文献   

3.
SnO2纳米薄膜的制备、显微结构及气敏性能   总被引:7,自引:0,他引:7  
SnO2纳米薄膜的制备、显微结构及气敏性能;SnO2薄膜;溶胶-凝胶法  相似文献   

4.
以氯化亚锡、草酸和无水乙醇为原料,采用溶胶-凝胶法制备了纳米SnO粉末,并用热重-差热分析、X-射线衍射分析、透射电镜和扫描电镜等多种电化学方法对其进行了表征。结果表明,采用溶胶-凝胶法可以制备出粒度分布较集中,平均粒径在20 nm左右的纳米SnO粉末。该纳米SnO的可逆容量达到607 mAh·g-1,经80次循环后平均每次循环的容量损失只有0.056%,说明纳米SnO是一种优秀的高容量锂离子电池负极材料。  相似文献   

5.
二氧化锡填充多壁碳纳米管材料的制备及电化学性能   总被引:1,自引:0,他引:1  
用硝酸氧化法处理多壁碳纳米管(MWCNTs), 使得MWCNTs端口打开, 长度变短, 表面得到改性. 通过二氯化锡与硝酸银反应, 过滤后的溶液在浓硝酸环境中, Sn2+在毛细作用下扩散进入碳纳米管管腔, 吸附、成核并在热处理作用下沉积, 从而制备出SnO2/MWCNTs纳米复合材料. XRD和TEM测试表明, 部分SnO2填充到MWCNTs管腔, 形成不连续的纳米颗粒. 电化学测试表明, SnO2填充的MWCNTs可以结合两者的优势, 使得复合材料的循环性能和比容量均有所改善.  相似文献   

6.
溶胶-凝胶法制备纳米Pb(Zr0.52Ti0.48)O3   总被引:2,自引:0,他引:2  
溶胶-凝胶法;纳米晶;溶胶-凝胶法制备纳米Pb(Zr0.52Ti0.48)O3  相似文献   

7.
用电化学方法在乙二醇溶液中制备锡、钛醇盐配合物Sn0.75Ti(OCH2CH2OH)(7-x),将电解液水解、干燥后在400℃煅烧2 h,得到纳米级SnO2/TiO2粉体。通过红外光谱(FT-IR)和拉曼光谱(Raman)对电解产物进行测试,纳米SnO2/TiO2粉体通过X射线粉末衍射(XRD)和扫描电子显微镜(SEM)进行表征。实验表明,在有机体系电解得到的纳米SnO2/TiO2粉体颗粒分散较理想,粒径在100~200 nm。再通过溶胶-凝胶法在钛丝表面得到纳米SnO2/TiO2电极,采用循环伏安法研究电极在酸性溶液和间-硝基苯酚溶液中的氧化还原行为和电催化活性。结果表明,纳米TiO2掺杂SnO2电极的氧化峰电流达到143×10-3A/cm2,氧化还原峰电位差明显减小,催化降解间-硝基苯酚的COD去除率达到86.1%,具有较高的电催化活性。  相似文献   

8.
选择孔道丰富的竹炭、锯末、脱脂棉和滤纸等作为天然模板,结合水/醇溶胶浸渍-煅烧法成功地制备了纳米SnO2;采用X射线衍射仪(XRD)和透射电镜(TEM)分析了所制备的纳米材料的晶型、形貌、粒径.结果表明,纳米SnO2产物呈球形,具有四方相金红石型结构,平均粒径在10~25 nm范围内;其粒径大小与模板类型和溶胶体系有关...  相似文献   

9.
溶胶-凝胶法制备α-Fe2O3纳米晶   总被引:7,自引:0,他引:7  
牛新书  徐荭 《应用化学》2000,17(6):611-614
钛酸四丁酯;十二烷基磺酸钠;溶胶-凝胶法制备α-Fe2O3纳米晶  相似文献   

10.
运用溶胶-凝胶及低温水热法合成纳米TiO2/碳纳米管复合催化剂, 以甲基橙为目标降解物考察复合物的光催化活性. 运用X光衍射、透射电镜、Brunauer-Emmett-Teller低温氮气吸附、差热-热重分析及紫外-可见漫反射吸收光谱等表征催化剂. 结果表明, 与单纯纳米TiO2相比, 溶胶-凝胶法制备的复合催化剂的光催化活性显著提高, 实验条件下复合的碳纳米管最适含量为3%(碳纳米管/TiO2, 重量百分比), 复合催化剂经在缓和氧化气氛中焙烧处理可在保持碳纳米管热稳定前提下获得纳米TiO2的充分晶化. 观察到了低温水热合成的复合催化剂的甲基橙降解活性的进一步提升, 复合催化剂中纳米TiO2在碳纳米管表面分散均匀, TiO2和碳纳米管组分间的紧密和充分键合及低温水热条件下催化剂的大比表面积、超细粒径以及碳纳米管的热稳定等有利于复合催化剂的光催化活性. 进一步地, 探讨了复合催化剂中适量碳纳米管组分的光活性促活机制.  相似文献   

11.
Silica xerogels containing Eu3+ ions and SnO2 nanocrystals were prepared in the sol‐gel process, and characterized by x‐ray diffraction (XRD) and photoluminescence spectra. Under the excitation at 393 nm, characteristic emission of Eu3+ ions at 614 nm was enhanced with increasing amount of SnO2 nanocrystals. Moreover, when the Eu3+/SnO2 co‐doped samples were excited at 345 nm, corresponding to the sideband of SnO2 nanocrystals, the emission of Eu3+ ions at 614 nm was clearly observed, while no emission of Eu3+ ions for the Eu3+‐doped sample. It may be ascribed to the energy transfer from SnO2 conduction band to Eu3+ conduction band. Further experimental results suggest that the energy transfer may be achieved through surface transition state.  相似文献   

12.
Fluorescence and spectral hole burning properties of Eu3+ ions were studied in nanocrystals-precipitated SnO2-SiO2 glasses. The glasses were prepared to contain various amount of Eu2O3 using the sol-gel method, in which SnO2 nanocrystals were precipitated by heating in air. In the glasses containing Eu2O3 less than 1%, the Eu3+ ions were preferentially doped in the SnO2 nanocrystals and their fluorescence intensities were enhanced by the energy transfer due to the recombination of electrons and holes excited in SnO2 crystals. The SnO2 nanocrystals-precipitated glasses exhibited the persistent spectral holes with the depth of ∼25% of the total fluorescence intensities of the Eu3+ ions. With the increasing Eu2O3 concentration, the amount of SnO2 nanocrystals decreased and the Sn4+ ions formed the random glass structure together with the silica network. This structure change induced the fluorescence intensities and the hole depth to decrease.  相似文献   

13.
Tin oxide (SnO2) nanotubes with a fiber‐in‐tube structure have been prepared by electrospinning and the mechanism of their formation has been investigated. Tin oxide‐carbon composite nanofibers with a filled structure were formed as an intermediate product, which were then transformed into SnO2 nanotubes with a fiber‐in‐tube structure during heat treatment at 500 °C. Nanofibers with a diameter of 85 nm were found to be located inside hollow nanotubes with an outer diameter of 260 nm. The prepared SnO2 nanotubes had well‐developed mesopores. The discharge capacities of the SnO2 nanotubes at the 2nd and 300th cycles at a current density of 1 A g?1 were measured as 720 and 640 mA h g?1, respectively, and the corresponding capacity retention measured from the 2nd cycle was 88 %. The discharge capacities of the SnO2 nanotubes at incrementally increased current densities of 0.5, 1.5, 3, and 5 A g?1 were 774, 711, 652, and 591 mA h g?1, respectively. The SnO2 nanotubes with a fiber‐in‐tube structure showed superior cycling and rate performances compared to those of SnO2 nanopowder. The unique structure of the SnO2 nanotubes with a fiber@void@tube configuration improves their electrochemical properties by reducing the diffusion length of the lithium ions, and also imparts greater stability during electrochemical cycling.  相似文献   

14.
We report the synthesis and characterization of SnO2@multiwalled carbon nanotubes (MWCNTs) nanocomposite as a high capacity anode material for sodium-ion battery. SnO2@MWCNT nanocomposite was synthesized by a solvothermal method. SEM and TEM analyses show the uniform distribution of SnO2 nanoparticles on carbon nanotubes. When applied as anode materials in Na-ion batteries, SnO2@MWCNT nanocomposite exhibited a high sodium storage capacity of 839 mAh g 1 in the first cycle. SnO2@MWCNT nanocomposite also demonstrated much better cycling performance than that of bare SnO2 nanoparticles and bare MWCNTs. Furthermore, the nanocomposite electrode also showed a good cyclability and an enhanced Coulombic efficiency on cycling.  相似文献   

15.
A SnO2/α-Fe2O3 architectural nanocomposite, which was evidenced as SnO2 nanorod arrays assembled on the surface of α-Fe2O3 nanotubes in our previous study, was investigated microscopically by means of Mössbauer spectroscopic and magnetic measurements. It was found for the SnO2 nanorods that Fe3+ ions substituted slightly to Sn0.998Fe0.002O2. Concerning the α-Fe2O3 tubes, the Morin transition, which was completely suppressed in the mother, SnO2-free α-Fe2O3 nanotubes, was found to be recovered locally. We speculate that it takes place in the interface area as a result of structural modification needed for the connection with the SnO2 nanorods.  相似文献   

16.
Hybrid SnO2/nanocarbon families (graphene nanosheets (GNSs), single-wall carbon nanotubes (SWCNTs), multi-wall carbon nanotubes (MWCNTs) and carbon nanospheres (CNSs)) have been synthesized by a similar wet chemical method. SnO2 nanoparticles are uniformly loaded on the surface of the nanocarbon families. As lithium battery anodes, their electrochemical properties of the reaction of lithium are investigated under the same conditions. To compare between them, SnO2/GNSs have the largest capacity; SnO2/GNSs and SnO2/SWCNTs have high cyclability; and SnO2/MWCNTs can maintain the capacity at high current density. Such behaviors are ascribed to their surface-to-volume ratio, structure flexibility, ion mobility and electron conductivity. The present results are the bases for their practical applications in lithium-ion battery anodes.  相似文献   

17.
Hui Li  Yongheng Zhu  Qun Xiang 《Talanta》2010,82(2):458-70
SnO2 nanowires with an average 0.6 μm in length and about 25 nm in diameter were prepared by a hydrothermal method. The sensors were fabricated using SnO2 nanowires assembled with Pd nanocrystals. The sensing properties of the sensors such as selectivity, response-recovery time and stability were tested at 290 °C. After assembling Pd nanocrystals onto the surface of SnO2 nanowires, the gas sensing properties of the sensors toward H2S were improved. The sensors based on Pd nanoparticle@SnO2 nanowires exhibit high stability owing to stable single crystal structure. The mechanism of promoting sensing properties with Pd nanoparticles is discussed.  相似文献   

18.
Pure SnO2, sulfated SnO2-SO4 2- and Pd supported on SnO2 and SnO2-SO4 2- were prepared from SnO2 precursor with high surface area, and used for CH4 deep oxidation. The catalysts were characterized by means of N2-BET, XRD, TG-DTA, XPS and TPD. SnO2-SO4 2- shows higher activity than SnO2, due to the presence of more active oxygen species, superacid sites and its higher BET surface area. Pd/SnO2 and Pd/SnO2-SO4 2- display essentially the same activity to each other, while it is much higher than the activity on SnO2 and SnO2-SO4 2-. The main reason is ascribed to the concerted action between Pd and the supports.  相似文献   

19.
In spite of their low cost, high activity, and diversity, metal oxide catalysts have not been widely applied in vanadium redox reactions due to their poor conductivity and low surface area. Herein, SnO2/reduced graphene oxide (SnO2/rGO) composite was prepared by a sol–gel method followed by high-temperature carbonization. SnO2/rGO shows better electrochemical catalysis for both redox reactions of VO2+/VO2+ and V2+/V3+ couples as compared to SnO2 and graphene oxide. This is attributed to the fact that reduced graphene oxide is employed as carbon support featuring excellent conductivity and a large surface area, which offers fast electron transfer and a large reaction place towards vanadium redox reaction. Moreover, SnO2 has excellent electrochemical activity and wettability, which also boost the electrochemical kinetics of redox reaction. In brief, the electrochemical properties for vanadium redox reactions are boosted in terms of diffusion, charge transfer, and electron transport processes systematically. Next, SnO2/rGO can increase the energy storage performance of cells, including higher discharge electrolyte utilization and lower electrochemical polarization. At 150 mA cm−2, the energy efficiency of a modified cell is 69.8%, which is increased by 5.7% compared with a pristine one. This work provides a promising method to develop composite catalysts of carbon materials and metal oxide for vanadium redox reactions.  相似文献   

20.
采用十二烷基三甲基溴化铵(DTAB)辅助固相法制备SnO2/MWCNTs纳米复合材料,X射线衍射(XRD)、透射电镜(TEM)测试表明,SnO2纳米颗粒均匀包裹在MWCNTs表面.循环伏安和恒流充放电测试表明,与SnO2颗粒和纯MWCNTs相比,SnO2/MWCNTs纳米复合材料在1.0 mol·L-1 Na2SO4电解液中的电化学电容性质得到明显改善.当SnO2质量分数为11%时,在电流密度0.2 A·g-1下,SnO2的电容值最大可达217.3 F·g-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号