首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
采用密度泛函理论的B3LYP方法, 在6-311++G(d,p)基组水平上研究了CH3自由基与HNCO的微观反应机理, 优化了反应过程中的反应物、中间体、过渡态和产物, 为了获得更精确的能量信息, 还计算了体系在反应途径上各驻点的能量. 振动分析和IRC分析结果证实了中间体和过渡态的真实性, 计算所得的键鞍点电荷密度的变化情况也确认了反应过程. 对于CH3自由基与HNCO反应, 找到了七条可行的反应通道, 对结果的分析表明: 通道CH3+HNCO→TS7→IM4→TS9→IM5, 控制步骤活化能最低, 是该反应的主要通道. 在该反应体系中质子迁移过程反应活化能不高, 也是能发生的.  相似文献   

2.
尚静  查东  李来才  田安民 《化学学报》2006,64(9):923-929
采用密度泛函理论的B3LYP方法, 在6-311++G(d,p)基组水平上研究了CH3自由基与HNCO的微观反应机理, 优化了反应过程中的反应物、中间体、过渡态和产物, 为了获得更精确的能量信息, 还计算了体系在反应途径上各驻点的能量. 振动分析和IRC分析结果证实了中间体和过渡态的真实性, 计算所得的键鞍点电荷密度的变化情况也确认了反应过程. 对于CH3自由基与HNCO反应, 找到了七条可行的反应通道, 对结果的分析表明: 通道CH3+HNCO→TS7→IM4→TS9→IM5, 控制步骤活化能最低, 是该反应的主要通道. 在该反应体系中质子迁移过程反应活化能不高, 也是能发生的.  相似文献   

3.
采用密度泛函理论B3LYP方法研究了SiH2自由基与HNCO的反应机理, 并在B3LYP/6-311++G**水平上对反应物、中间体、过渡态进行了全几何参数优化, 通过频率分析和内禀反应坐标(IRC)确定了中间体和过渡态. 为了得到更精确的能量值, 又用QCISD(T)/6-311++G**方法计算了在B3LYP/6-311++G**水平优化后的各个驻点的相对能量. 计算结果表明SiH2自由基与HNCO的反应有五条反应通道, 其中顺式反应通道SiH2+HNCO→IM3→ TS4→IM5→TS5→IM6→SiH2NH+CO反应能垒最低, 为主反应通道.  相似文献   

4.
采用密度泛函理论B3LYP方法研究了SiH2自由基与HNCO的反应机理, 并在B3LYP/6-311++G**水平上对反应物、中间体、过渡态进行了全几何参数优化, 通过频率分析和内禀反应坐标(IRC)确定了中间体和过渡态. 为了得到更精确的能量值, 又用QCISD(T)/6-311++G**方法计算了在B3LYP/6-311++G**水平优化后的各个驻点的相对能量. 计算结果表明SiH2自由基与HNCO的反应有五条反应通道, 其中顺式反应通道SiH2+HNCO→IM3→ TS4→IM5→TS5→IM6→SiH2NH+CO反应能垒最低, 为主反应通道.  相似文献   

5.
HNCS与CX(X=H,F,Cl)自由基反应的理论研究   总被引:6,自引:0,他引:6  
刘朋军  赵岷  潘秀梅  苏忠民  王荣顺 《化学学报》2004,62(13):1191-1196,J001
用量子化学密度泛函理论的UB3LYP方法,在6-31 G^*水平上按BERNY能量梯度解析法全参数优化了HNCS与CX(X=H,F,Cl)反应势能面上各驻点的几何构型,通过同一水平的振动频率分析确认了中问体和过渡态,并得到各驻点的零点能校正(Ezpc).通过内禀反应坐标(IRC)计算确认了反应物、中间体、过渡态和产物的相关性并得到最小能量途径(MEP).为了得到体系势能面的更准确信息,在各驻点的UB3LYP/6-31 G^*构型基础上,又进行了UQCISD(T)/6-311 G^**水平上的单点能计算,得到体系的势能面信息和可能的反应机理.应用变分过渡态理论及最小能量途径半经典绝热基态(MEPSAG)、小曲率半经典绝热基态(SCSAG)隧道效应校正的方法计算了标题反应在250~1500K温度范围内的速率常数.研究结果表明,HNCS与CX自由基反应是通过分子间H原子迁移及N—C键的断裂,生成产物CS NCXH.反应均为放热反应.  相似文献   

6.
CH3+HNCO反应机理的理论研究   总被引:4,自引:0,他引:4  
在6-311++G**基组水平上,采用UMP2方法对自由基CH3与HNCO反应机理进行了研究,全参数优化了反应通道上各驻点的几何构型.结果表明, 自由基CH3与HNCO分子间反应有三条反应通道,第一为CH3与HNCO分子间经过生成一个稳定化能为4.56 kJ•mol-1的含氢键的分子复合物M后,经过渡态TS生成另一个产物复合物M′,然后分解为甲烷和NCO自由基;第二是CH3与HNCO分子间通过生成稳定反式中间体trans-int,其经过渡态trans-ts分解成产物CH3NH和CO;第三是CH3与HNCO分子间通过生成稳定顺式中间体cis-int,其经过渡态cis-ts分解成产物CH3NH和CO.比较三条反应通道的反应活化能,表明CH3与HNCO反应较易生成CH4+NCO.  相似文献   

7.
采用密度泛函理论B3LYP方法在B3LYP/6-311++G**水平上对反应物、中间体、过渡态进行了全几何参数优化, 通过频率分析和IRC方法确认了中间体和过渡态. 又用QCISD(T)/6-311++G**//B3LYP/6-311++G**方法计算了各个驻点的单点能, 计算结果表明单重态的硅烯与异硫氰酸的反应有抽提硫、插入、抽提亚氨基的路径. 而经由三元环中间体的抽提硫反应SiH2+HNCS→IM1→TS2→IM3→TS3→IM4→SiH2S+HNC(P1), 反应能垒最低, 为主反应通道, 硫代硅甲醛和异氰氢酸为主产物. 硅烯直接抽提硫、插入N—H键和经由三元环中间体的亚氨基抽提反应为竞争反应通道, 在室温下可以发生, 应为次反应通道.  相似文献   

8.
采用自洽场分子轨道UHF/6-31G**从头算法,研究了1,2-C4H6→2-C4H6异构化反应机理,优化了基态势能面上反应物、过渡态、中间体和产物的几何构型,并对各驻点能量进行了零点能校准.结果表明该反应经历一个1-甲基环丙烯生成产物比经两步氢迁移反应历程更易发生.  相似文献   

9.
金属Ir4簇催化乙烯加氢反应势能面的理论研究   总被引:1,自引:0,他引:1  
应用密度泛函理论(DFT)对金属Ir4簇催化乙烯加氢反应的反应机理进行了详尽的理论研究.在B3LYP/ECP[C,H:6-311G(d)和6-31G(d);Ir:LANL2DZ]理论水平下优化了反应通道上各驻点(反应物、中间体、过渡态和产物)的几何构型,并且用组态相互作用CCSD/ECP[C,H:6-311G(d,p);Ir:LANL2DZ]计算了各驻点的单点能,构建了该反应的基态势能面.为了验证过渡态的真实性,在B3LYP/ECP理论水平下做了内禀反应坐标(IRC)计算和频率分析.计算结果表明:金属Ir4簇催化乙烯加氢反应为双通道(a和b)反应,经过多个反应步骤完成;通道a:R→TSR-1→I1→TS1-2→I2→TS2-3→I3→TS3-P→P为较为可行的反应通道.  相似文献   

10.
采用密度泛函理论B3LYP方法研究了GeH2自由基与HNCS的反应机理,并在B3LYP/6-311++G**水平上对反应物,中间体,过渡态进行了全几何参数优化,通过频率分析和IRC确定中间体和过渡态。为了得到更精确的能量值,用QCISD(T)/6-311++G**方法计算了各个驻点的单点能,计算结果表明单重态的锗烯与异硫氰酸的反应有抽提硫、插入N-H键、抽提亚氨基的路径,而经由三元环中间体的抽提硫反应GeH2+HNCS→IM3→TS2→IM4→TS3→IM5→GeH2S+HNC(P1),反应能垒最低,为主反应通道,甲锗硫醛和异氰氢酸为主产物。锗烯经由四元环中间体抽提硫的反应为竞争反应通道。  相似文献   

11.
采用密度泛函理论(DFT)研究了4-氟苯甲醛、β-萘胺和Meldrum酸一锅反应生成1-(4-氟苯基)-1,2-二氢苯并[f]喹啉-3(4H)-酮的微观反应机理.在B3LYP/6-311G*基组水平上优化了反应物、过渡态、中间体及产物的几何构型,通过振动分析确认了过渡态的结构,并用内禀反应坐标(IRC)确认反应途径.应用分子中的原子理论(AIM)分析了这些物质的成键特征.采用SCRF(PCM)方法研究了反应体系的溶剂化效应.报道了可能的反应路径,其中Re→TS1→IM1→TS2→IM2→TS3→IM3→TS4→IM5→TS7→IM9→TS13→IM10→TS14→P3具有相对较低的活化能,是反应的主要通道,理论预测的主要产物与实验吻合.  相似文献   

12.
H2CCF自由基与HNCO反应机理的理论研究   总被引:4,自引:0,他引:4  
查东  李来才  朱元强  田安民 《化学学报》2005,63(19):1782-1788
采用密度泛函理论的B3LYP方法, 在6-311++G(d,p)基组水平上研究了H2CCF自由基与HNCO的微观反应机理, 优化了反应过程中的反应物、中间体、过渡态和产物, 为了获得更精确的能量信息, 还在QCISD(T)/6-311++G(d,p)基组水平上计算了各物质的能量.振动分析结果和IRC分析结果证实了中间体和过渡态的真实性, 计算所得的成键临界点电荷密度的变化也确认了反应过程.对于H2CCF自由基与HNCO反应, 我们找到了六条可行的反应通道, 结果分析表明通道H2CCF+HNCO→IM3→TS5→H2CCFH+NCO控制步骤活化能最低, 是该反应的主要通道, 在此反应过程中有稳定的氢键复合物IM3生成, 还表现出氢原子迁移的反应特征.  相似文献   

13.
The reaction mechanism of CH2CH radical with HNCO has been investigated systematically by density functional theory (DFT). The geometries and harmonic frequencies of reactants, intermediates, transition states, and products have been optimized with the B3LYP at different levels. At the same time, AIM is performed to calculate the charge density of some bonding critical points and the charges of some atoms. Nine feasible reaction pathways have been investigated. The results indicated that the main pathway is CH2CH + HNCO → IMA1 → TSA1 → CH2CH2 + NCO, which is characterized by hydrogen atom transferring. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

14.
采用密度泛函和耦合簇理论方法研究了HS与HONO的反应机理.在B3LYP/6-311+G(2df,2p)水平上对HS+HONO反应中的所有物种进行了几何构型优化和频率分析,通过内禀反应坐标(IRC)确认了反应物、过渡态、中间体和产物之间的相关性;采用CCSD(T)/6-311+G(2df,2p)方法获得了各物种的单点能.计算结果表明:HS+HONO的主要反应通道为HS+cis-HONO→p2-cis-IM1→p2-cis-TS→p2-IM2→P2(H_2S+NO_2),其反应活化能为71.26kJ·mol~(-1).  相似文献   

15.
The reaction for SiH3+O(3P) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The single point calculations for all the stationary points were carried out at the QCISD(T) /6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major pathway is the SiH3+O(3P)→IM1→TS3→IM2→TS8→HOSi+H2. The other minor products include the HSiOH+H, H2SiO+H and HSiO+H2. Furthermore, the products HOSi, HSiO and HSiOH(cis) can undergo dissociation into the product SiO. In addition, the calculations provide a possible interpretation for disagreement about the mechanism of the reaction SiH4+O(3P). It suggests that the products HSiOH, H2SiO and SiO observed by Withnall and Andrews are produced from the secondary reaction SiH3+O(3P) and not from the reaction SiH4+O(3P).  相似文献   

16.
The reaction for CH3CH2+O(3P) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single-point calculations for all the stationary points were carried out at the QCISD(T)/6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2O+CH3, CH3CHO+H and CH2CH2+OH in the reaction. For the products CH2O+CH3 and CH3CHO+H, the major production channels are A1: (R)→IM1→TS3→(A) and B1: (R)→IM1→TS4→(B), respectively. The majority of the products CH2CH2+OH are formed via the direct abstraction channels C1 and C2: (R)→TS1(TS2)→(C). In addition, the results suggest that the barrier heights to form the CO reaction channels are very high, so the CO is not a major product in the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号