首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
The metabolic disorder of glucose in human body will cause diseases such as diabetes and hyperglycemia.Hence the determination of glucose content is very important in clinic diagnosing.In recent years,researchers have proposed various non-invasive wearable sensors for rapid and real-time glucose monitoring from human body fluids.Unlike those reviews which discussed performances,detection environments or substrates of the wearable glucose sensor,this review focuses on the sensing nanomaterials since they are the key elements of most wearable glucose sensors.The sensing nanomaterials such as carbon,metals,and conductive polymers are summarized in detail.And also the structural characteristics of different sensing nanomaterials and the corresponding wearable glucose sensors are highlighted.Finally,we prospect the future development requirements of sensing nanomaterials for wearable glucose sensors.This review would give some insights to the further development of wearable glucose sensors and the modern medical treatment.  相似文献   

2.
Semiconductor quantum dots (QDs) exhibit unique optical and photophysical properties. These features are implemented to develop optical molecular sensor systems. The review addresses the methods to functionalize the QDs with chemical capping layers that enable the use of the resulting hybrid structures for sensing, and discusses the photophysical mechanisms being applied in the different sensor systems. Different methods to design the chemically-modified QDs hybrid structures for sensing low-molecular-weight substrates, metal ions, anions and gases are presented. These include the functionalization of the QDs with ligands that bind ions, the modification of the QDs with substrate-specific ligands or receptor units, and the chemical modification of the QDs upon sensing. Specific emphasis is directed to describe the cooperative catalytic functions of the QDs in the sensing processes, and to address the function of sensing with logic-gate operations.  相似文献   

3.
近年来,国内外不断发生的化学恐怖袭击和化学事故仍然是当今人类生存、国家安全所面临的重大威胁。化学侦检是防化应急处置与救援的眼睛,熟练掌握和正确使用侦检装备是应对化学威胁、降低损失和伤亡的关键因素。基于化学传感等技术的侦检装备具有响应快速、智能便携的特点,并且在远程监测和实时值守等方面具有优势。该文针对涵盖电化学传感器、质量敏感型传感器、红外传感器、拉曼传感器、离子迁移谱仪、火焰光度检测器、光致电离检测器、远程遥测传感装备等在内的现场侦检装备,从原理、性能、优势和不足等方面进行了概述,重点阐述了侦检装备在应对化学威胁方面的最新进展,并对其发展趋势、应用前景进行了展望,以期为化学侦检装备在应对化学威胁中的深入研究与应用提供参考。  相似文献   

4.
DNA是构建纳米技术和生物传感技术新设备的良好构建体。DNA生物传感器由于具有灵敏度高、选择性好等特点,近年来获得了飞速发展。研究发现,金属纳米粒子(MNPs)、碳基纳米材料等一系列纳米材料在传感器设计中提高了电化学DNA传感器的传感性能。本文侧重介绍了场效应晶体管、石墨烯、碳纳米管等新型纳米传感材料,以及基于这些材料的DNA生物传感器的最新进展,最后展望了DNA生物传感器的应用前景。  相似文献   

5.
Nanopore sensing is an attractive, label‐free approach that can measure single molecules. Although initially proposed for rapid and low‐cost DNA sequencing, nanopore sensors have been successfully employed in the detection of a wide variety of substrates. Early successes were mostly achieved based on two main strategies by 1) creating sensing elements inside the nanopore through protein mutation and chemical modification or 2) using molecular adapters to enhance analyte recognition. Over the past five years, DNA molecules started to be used as probes for sensing rather than substrates for sequencing. In this Minireview, we highlight the recent research efforts of nanopore sensing based on DNA‐mediated characteristic current events. As nanopore sensing is becoming increasingly important in biochemical and biophysical studies, DNA‐based sensing may find wider applications in investigating DNA‐involving biological processes.  相似文献   

6.
This review deals with short peptides (up to 50 amino acids) as biomimetic active recognition elements in sensing systems. Peptide-based sensors have been developed in recent years according to different strategies. Synthetic peptides have been designed on the basis of known interactions between single or a few amino acids and targets, with attention being paid to the presence of peptide motifs known to allow intermolecular self-organization of the sensing peptides over the sensor surface. Sensitive and sophisticated sensors have been obtained in this way, but the use of designed peptides is limited by severe difficulties in their in silico design. Short peptides from random phage display have been selected in a random way from large, unfocussed, and often preexisting and commercially available phage display libraries, with no design elements. Such peptides often perform better than antibodies, but they are difficult to select when the target is a small molecule because of the need to immobilize it with considerable modifications of its structure. Artificial, miniaturized receptors have been obtained from the reduction of the known sequence of a natural receptor down to a synthesizable and yet stable one. Alternatively, binding sites have been created over a designed, stable peptide scaffold. Short peptides have also been used as active elements for the detection of their own natural receptors: pathogenic bacteria have been detected with antimicrobial and cell-penetrating peptides, but key challenges such as detection of bacteria in real samples, improved sensitivity, and improved selectivity have to be faced. Peptide substrates have been conjugated to fluorescent quantum dots to obtain disposable sensors for protease activity with high sensitivity. Ferrocene–peptide conjugates have been used for electrochemical sensing of protease activity.  相似文献   

7.
Optical chirality sensing has attracted a lot of interest due to its potential in high-throughput screening in chirality analysis. A molecular sensor is required to convert the chirality of analytes into optical signals. Although many molecular sensors have been reported, sensors with wide substrate scope remain to be developed. Herein, we report that the amide naphthotube-based chirality sensors have an unprecedented wide scope for chiroptical sensing of organic molecules. The substrates include, but are not limited to common organic products in asymmetric catalysis, chiral molecules with inert groups or remote functional groups from their chiral centers, natural products and their derivatives, and chiral drugs. The effective chirality sensing is based on biomimetic recognition in water and on effective chirality transfer through guest-induced formation of a chiral conformation of the sensors. Furthermore, the sensors can be used in real-time monitoring on reaction kinetics in water and in determining absolute configurations and ee values of the products in asymmetric catalysis.  相似文献   

8.
Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.  相似文献   

9.
A dissolved oxygen sensor based on fluorescence quenching of the oxygen-sensitive ruthenium complex, [Ru(II)-tris(4,7-diphenyl-1,10-phenanthroline]2+, which has been immobilized in a porous silica sol-gel-derived film, is reported. Ormosil sensing films were fabricated using modified silica precursors such as methyltriethoxysilane (MTEOS) and ethyltriethoxysilane (ETEOS) and were dip-coated onto planar glass substrates. Tailoring of the films for dissolved oxygen (DO) sensing is described whereby sensor response is optimized by maximizing film hydrophobicity by the use of the modified precursors. Sensor performance parameters such as limit of detection and sensor resolution are reported. Issues such as dye leaching and photobleaching are discussed. Progress towards a commercial instrument is reported.  相似文献   

10.
近年来,作为颜色标记和信号发生器的贵金属纳米粒子由于其简单性和实用性而被广泛用于比色测定和传感的研究当中。本文综述了近十年基于贵金属纳米粒子生长的比色传感器策略和应用的最新进展,总结了基于贵金属纳米颗粒生长的单色及多色传感器的传感原理、分类及前沿应用,探索了其比色传感的信号产生、分类和放大机制。由于贵金属纳米粒子在不同尺寸、距离、形状、成分等基底上的生长会产生不同的LSPR共振峰以及显著的传感信号变化,我们详细讨论了贵金属纳米粒子在金纳米棒等晶种基底上生长的比色传感。最后,我们对目前该比色传感面临的挑战和未来前景进行了展望。  相似文献   

11.
高灵敏度高选择性气敏材料--金属酞菁配合物   总被引:1,自引:0,他引:1  
酞菁配合物是一类重要的光电功能材料.由于它的特殊结构使其成为高灵敏度高选择性气敏材料,具有极好的应用前景.本文在介绍酞菁配合物的结构特点、合成方法、气敏特性及其最新研究进展的基础上,讨论了酞菁配合物的气敏机理及膜结构、中心金属和取代基对气敏性的影响,并对酞菁配合物作为气敏材料的发展趋势进行了展望。  相似文献   

12.
The electrocatalytic properties of boron-doped diamond (BDD) electrodes have been considered for a variety of sensing applications. The unusual electrochemical properties of BDD include a large potential window, a small background current, and better resistance to fouling than other carbon-based electrodes. The use of BDD for remediation and environmental sensing applications has recently attracted the interest of the sensor research community. This review focuses on recent developments that involve the use of BDD as an environmentally friendly sensing material for environmental analysis. The electrochemical properties of boron-doped diamond that has undergone surface modification (e.g., with metals or enzymes) will be considered. Recent achievements involving the use of BDD electrodes for detecting pesticides, mycotoxins, peroxides, and phenolic compounds are considered.  相似文献   

13.
An optical CO gas sensor was investigated using cobalt oxide thin films prepared by pulsed laser deposition. The cobalt oxide films were deposited on quartz glass and silicon wafer substrates in Ar at 0.07-133 Pa. The morphology and crystal phase of the films were changed by Ar pressure. Sensitivity was estimated as the transmittance change of the film in dry air and at 200 ppm of CO gas ambient at 350 degrees C. The morphology of the films greatly affected the sensing properties. The optimum Ar pressure for cobalt oxide film preparation for CO gas sensing was suggested to be 13.3 Pa, based on the relationship between the morphology and the optical sensor properties of the films.  相似文献   

14.
Nitrite has been widely used in industrial and agricultural production and is commonly found in food, drinking water, biology and environment. However, nitrite is a toxic inorganic pollutant that is very harmful to the health of human and other organisms. A variety of strategies have been proposed for nitrite detection in recent years. Among which, electrochemical approaches have gained more and more attention owing to the characteristics of simplicity, speediness, high sensitivity, and low cost, etc. The principle of nitrite electrochemical sensor is recommended in this review. The research progresses of nanocomposite material sensor for electrochemical nitrite detection based on carbon material, metal material, metal organic framework, conducting polymer and enzyme in recent years are also introduced from the perspective of composite electrode modification layer. The construction approaches and sensing performances of modified electrode are put special emphasis. At last, future trends of nitrite electrochemical sensor are discussed.  相似文献   

15.
A new method of synthesising nanoparticle-functionalised nanostructured materials via Aerosol Assisted Chemical Vapour Deposition (AACVD) has been developed. Co-deposition of Au nanoparticles with WO(3) nanoneedles has been used to deposit a sensing layer directly onto gas sensor substrates providing devices with a six-fold increase in response to low concentrations of a test analyte (ethanol).  相似文献   

16.
在现代分析领域中,对于生物传感器的要求不断倾向于微型化和便捷化。基于酶型生物燃料电池的自供能传感器在检测目标物的同时可以提供能量,避免了外电源的使用,为生物传感器的微型化和便捷化发展提供了有效途径,日益成为人们关注的焦点。本文按照设计原理进行分类,对近五年内发展的基于酶型生物燃料电池的自供能传感器进行了综述,并展望了其今后的研究趋势和应用前景。  相似文献   

17.
A compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-l,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol-gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq3), was used to excite the porphyrin dyes; a blue OLED, based on 4,4'-bis(2,2'-diphenylviny1)-1,1'-biphenyl, was used to excite the Ru(dpp)-based sensing element. The O2 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime tau of the O2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of tau in pure Ar and O2 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, S(g) identical with tau(0% O2)/tau(100% O2), at 23 degrees C, were approximately 35 to approximately 50 for the [Alq3 OLED[/[PtOEP dye] pair; S(g) exceeded 200 for the Alq3/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, S(DO) (defined as the ratio of tau in de-oxygenated and oxygen-saturated solutions) was approximately 9.5 and approximately 11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with PtOEP dissolved directly in the solution. That sensor exhibited a high sensitivity, but a limited dynamic range. Effects of aggregation of dye molecules, sensing film porosity, and the use of the OLED-based sensor arrays for O2 and multianalyte detection are also discussed.  相似文献   

18.
InterDigitated Capacitive (IDC) sensor arrays are fabricated with conventional microelectronics-micromachining technologies on quartz substrates. After the IDC fabrication, a polymeric well is patterned around each IDC to precisely define the sensing area and thus deposit coatings of various polymers, by drop casting, in a reproducible and controlled manner. The performance of the coated IDC array is evaluated in terms of IDC critical dimension, measurement frequency and for two analytes and guidelines for improved sensing performance are proposed. Through careful selection of the polymeric coatings in conjunction with suitable signal processing, discrimination of VOCs is possible.  相似文献   

19.
The response characteristics of various carbon substrates towards the direct oxidative measurement of urate and other key purine biomarkers have been compared. A novel carbon fibre laminate assembly has been proposed as an alternative substrate for the preparation of disposable sensing strips. The fabrication method is generic and readily transferable to a number of sensor applications. Its performance in the determination of urate within biofluids (serum and plasma) has been critically assessed. An inter-laboratory pilot study demonstrated the bioanalytical efficacy of the approach with the responses validated through comparison with the standard colorimetric (uricase/peroxidase) assay.  相似文献   

20.
We report a facile template-free method for the large-area growth of freestanding hollow Co3O4 nanowire arrays on a variety of substrates including transparent conducting glass, Si wafer, and copper foil, et al. These nanowires have the interesting combined properties of mesoporosity and quasi-single-crystallinity. With their high surface area and crystallinity, and their direct growth on conductive substrate, these Co3O4 nanowire arrays will have promising applications in lithium-ion batteries, chemical sensing, and field-emission and electrochromic devices. Using the prepared nanowire arrays as electrode, an electrochemical sensor for hydrogen peroxide sensing has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号