首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
山西“两高”煤灰分对石灰石助熔机制影响的研究   总被引:1,自引:0,他引:1  
以山西"两高"煤为研究对象,考察了洗选改变灰分对添加助熔剂Ca CO3的影响。研究发现,随着洗煤灰分的降低,煤灰中二氧化硅含量及硅铝比(Si/Al)降低,煤灰流动温度降低至液态排渣气流床气化所需温度时,Ca CO3的添加比例与洗煤高温下生成的矿物质种类及其含量相关,经过洗选降低灰分后的FH与SH洗煤,通过添加一定比例的助熔剂Ca CO3,高温下煤灰渣类型由结晶渣变为玻璃体渣,排渣温度范围宽,能够很好地满足气流床气化液态排渣的要求,洗选与添加Ca CO3助熔剂配合使用的方式,可以有效调控山西"两高"煤灰流动性质。  相似文献   

2.
以高灰熔点朱集西洗煤为对象,研究了助熔剂CaCO3、Fe2O3、CaCO3/Fe2O3复合助熔剂以及CaMg(CO3)2对其煤灰熔融特性的影响。结果表明,各助熔剂均可降低煤灰熔融温度,但助熔效果与助熔剂种类和添加量有关,采用CaCO3/Fe2O3复合助熔剂以及CaMg(CO3)2在添加量较小时,助熔效果明显;利用FactSage热力学软件,分析了添加助熔剂对煤灰中矿物高温熔融行为的影响,为进一步掌握助熔剂的助熔机理提供理论帮助。  相似文献   

3.
配煤和助熔剂降低煤灰熔融温度的矿物学特性研究   总被引:1,自引:0,他引:1  
主要研究添加助熔剂或配煤降低晋城无烟煤的灰熔融温度。通过X射线衍射(XRD)、热力学计算以及灰熔点测试等手段,研究混煤灰熔融特性及其在变形温度时的矿物学特征,解析其结渣特点。结果表明,原煤灰含量越低,混煤灰熔点降低效果越明显。在配煤添加量为20%时,低灰煤C灰熔点降低趋势最明显,对于高灰煤G,则为30%;助熔剂K对C的灰熔点降低效果比对G的更明显。在混煤灰的变形温度处,出现了长石类矿物质。长石类矿物含量的上升和莫来石含量的下降促使灰熔点快速降低。热力学计算表明,高温下,煤灰中液相物质的产生伴随着钙长石和石英含量的快速下降以及莫来石含量的缓慢降低。钙长石参与了煤灰中液相物质的产生。能够与钙长石作用形成低熔点共熔体的物质的含量决定了它的助熔效果。  相似文献   

4.
铁基助熔剂对皖北刘桥二矿煤的灰熔融特性影响研究   总被引:3,自引:2,他引:1  
研究了铁基助熔剂对皖北刘桥二矿煤(AQ)灰熔融特征的影响,并对AQ煤灰在添加铁基助熔剂前后不同热处理温度下的矿物组成进行了XRD和红外光谱分析。结果表明,导致AQ煤灰熔点高的主要原因是1000℃以上形成的莫来石引起的;加入铁基助熔剂可以降低AQ煤灰的熔融温度;在高温下铁基助熔剂与煤灰中其他铝硅酸盐矿物发生反应,生成铁橄榄石和铁尖晶石等低温共熔化合物,从而使煤灰熔点明显下降。  相似文献   

5.
高钙高铁煤灰熔融及黏温特性研究   总被引:2,自引:0,他引:2  
以金鸡滩煤为原料,沙子为添加剂,研究不同比例添加剂下高钙高铁煤灰熔融及黏温特性变化;通过XRD、高温热台显微镜与扫描电镜-能谱等分析方法研究矿物质转变对其灰熔融及黏温特性影响。结果表明,煤灰熔点随添加剂量的增加先降低后升高,辉石类低温共熔物生成是其降低的主要原因;原煤熔渣黏度波动与钙铝黄长石生成有关,而含铁矿物质析出导致其黏度迅速增加;添加沙子后,煤灰熔渣临界温度显著下降,熔渣由结晶渣向玻璃渣转变。原煤熔渣中Fe、Ca元素分布不均匀,添加沙子后均匀程度明显改善,与黏温曲线测试结果吻合。实验结果表明,沙子是改善高钙高铁煤黏温特性的一种有效添加剂。  相似文献   

6.
以三种含V和Ni灰为研究对象,探索通过添加助剂和配煤两种途径来调控含V和Ni灰的流动性,利用XRD、SEMEDX和三元相图等分析方法,探究了两种方法调控含V和Ni灰流动性的机理。结果表明,灰中V和Ni在高温下形成难熔物钒氧矿和单质镍,配煤和添加CaO降低了V和Ni的含量,同时可降低除V和Ni以外灰组成的液相温度,进而降低灰的熔融温度。当灰中V和Ni的总含量低于30%时,配入助熔剂CaO可明显降低灰的熔融温度,但其黏温曲线转变为结晶渣类型。当灰中V和Ni含量高于30%时,需通过配入低熔点煤灰降低熔融温度,在满足气流床排渣要求的煤灰中配入5%的该灰后,其黏温特性仍满足气流床液态排渣的要求,但配比达到10%时,降温过程中析出大量的富钒尖晶石,使灰渣黏温曲线转变为结晶渣类型,其不再适合气流床液态排渣的要求。  相似文献   

7.
山西典型无烟煤灰流动性的调控   总被引:1,自引:0,他引:1  
为满足气化炉液态排渣的要求,考察和比较了CaO、MgO和Fe2O3三种助熔剂对山西典型无烟煤煤灰流动性(熔融性和黏温特性)的影响.研究发现,MgO对硅铝比在1.2~2.0的高硅铝煤灰的流动温度降低最有效,其次为CaO和Fe2O3,这是由于使用各种助熔剂时生成不同的高温稳定矿物组分造成的.针对三种助熔剂建立了流动温度和完全液相温度的关系式,并得到了CaO和Fe2O3含量与流动温度的关系:FT = 1 593-9.573 × wCaO (R2=0.9429) 和FT =1 576-8.330 6 × wFe2O3 (R2=0.955 9),可以用于指导助熔剂的添加.CaO无论从降低黏度数值或降低临界黏度温度都具有最好的效果.Ca2+、Mg2+、Fe2+的电负性差异和高温下的产物不同是三种助剂对黏度数值影响不同的根本原因; Mg2+、Fe2+具有较小的离子半径以及单质铁在高温下析出是导致临界黏度温度较高的原因.  相似文献   

8.
助熔剂对煤焦高温气化反应性的影响   总被引:5,自引:1,他引:5  
研究了平顶山十二矿高灰熔点煤灰分别添加助熔剂(氧化钙和三氧化二铁)后灰熔点的变化规律,并考察了1 300 ℃~1 550 ℃范围内适宜助熔剂添加量下煤焦的气化反应性变化规律。实验表明:以灰的流动温度(t3)为选择依据,十二矿煤助熔剂氧化钙、三氧化二铁的适宜添加量相应为:3%~7%和5%~10%;助熔剂添加量对煤焦气化反应性的影响与气化温度密切相关。较低气化温度时,煤焦的气化反应性随添加量的增加而提高,但随温度的提高,助熔剂添加量对煤焦反应性的影响逐渐减弱,温度升至1 550 ℃时,助熔剂的影响几乎消失。助熔剂在高温下的熔融、团聚导致其在煤焦中分散性的改变,从而使助熔剂在较低温度下具有的催化作用很快消失,这可能是高气化温度下煤焦气化反应性不受助熔剂影响的最重要原因之一。  相似文献   

9.
长治煤与生物质混合灰熔融特性研究   总被引:2,自引:0,他引:2  
采用灰熔点测定仪、X射线荧光仪、X射线衍射仪和FactSage软件相结合对生物质(花生壳、稻壳)与高灰熔点长治煤混合灰的熔融特性及其熔融机制进行了研究。结果表明,两种生物质灰都可以降低长治煤的灰熔融温度,花生壳灰助熔效果优于稻壳灰,这主要与它们的化学组成和赋存形态有关。低熔点长石类矿物(钙长石、钠长石)和白榴石的生成是花生壳与长治煤混合灰熔融温度降低的主要原因;长石类矿物的生成及其与SiO2结合生成的低温共熔物引起稻壳与长治煤混合灰熔融温度降低。热力学计算表明,在碱性氧化物Na2O、CaO、K2O存在时,SiO2和Al2O3优先与其反应生成低熔点硅铝酸盐,一定程度上抑制了高熔点莫来石矿物的生成,从而起到助熔作用。混合灰的熔融过程可以分为含钾矿物熔融和含钙矿物熔融两个阶段,两类矿物熔融顺序:含钾矿物先于含钙矿物。  相似文献   

10.
城市生活垃圾灰渣的熔融及黏温特性对其固定床熔渣气化炉的优化设计和操作具有重要指导意义。本文分析了上海老港垃圾(LG)和扬州成型垃圾(YZ)的灰成分特征,利用高温热台显微镜、X射线衍射仪(XRD)及FactSage模拟探究了垃圾灰的熔融机制,同时结合高温黏度计、扫描电镜-能谱分析仪(SEM-EDS)和XRD分析晶体矿物质生成对灰渣黏度变化的影响。结果表明,两种生活垃圾灰的硅铝比均较高,但铝钙含量差异较大。YZ灰流动温度比LG灰约高150℃,与LG灰中形成易低温共熔的硅灰石,而YZ灰在高温下仍存在石英及尖晶石有关。两种灰渣的熔融均符合“熔融-溶解”机制,且随温度升高均经历收缩、熔融和扩散过程。两条黏温曲线均呈现玻璃渣的特征,但YZ灰的黏度增长较快,与其降温过程产生长条状钙长石晶体有关。以YZ为气化原料需较高的排渣温度,而LG灰的熔融特性和黏温特性均较好,应用此原料气化炉可操作温度范围大。  相似文献   

11.
利用酸洗法和燃烧法分别得到煤中的有机物(脱灰煤粉)和煤灰,研究了煤变质程度、显微组分、煤灰含量等煤质特性对CeO2催化煤粉燃烧的影响。研究发现,变质程度对CeO2催化煤粉燃烧具有明显的影响,变质程度越高的脱灰煤粉燃点降低越多,燃速提高越快。其催化燃烧顺序为褐煤<烟煤<无烟煤。同时研究发现,CeO2对神华烟煤两种主要显微组分的燃烧没有明显的催化作用。煤灰对脱灰煤粉燃烧也有催化作用,对人工煤而言,当煤灰含量低于18%时,煤灰与CeO2具有协同作用。煤灰的质量分数为6%时,煤灰与CeO2的协同作用最强,之后随着煤灰增加协同作用逐渐变弱;当煤灰的质量分数超过18%时,协同作用消失,CeO2的催化作用消失。说明煤灰含量超过18%时,CeO2的催化作用被抑制。  相似文献   

12.
利用沉降炉系统对榆林和平朔的配煤进行结渣特性实验,测定不同实验温度下煤的结渣指数,并利用X射线衍射分析(XRD)对灰渣中矿物质组成进行了定量分析。结果表明,灰渣中主要存在四种结晶矿物质分别为氧化铁、钙长石、莫来石、氧化硅,以及无定形的玻璃体。其中,灰中氧化铁含量和灰渣中钙长石、莫来石含量对燃煤的结渣倾向性起显著性影响;灰中氧化铁和灰渣中钙长石含量越高、灰渣中的莫来石含量越低,煤燃烧的结渣倾向性越大。通过配煤可以降低煤灰中的氧化铁含量,并降低灰渣中的钙长石生成量和提高灰渣中的莫来石生成量,从而显著降低神木类煤的结渣倾向性。  相似文献   

13.
以120种煤样为数据基础,采用布谷鸟算法(CS)优化BP(Back Propagation)神经网络,建立了CSBP模型对单煤、煤掺添加剂和配煤等3类样本的煤灰变形温度(DT)样本进行预测。模型以煤灰化学成分及其组合参数等13个变量作为输入量,以变形温度(DT)作为输出量。CSBP模型预测结果与BP神经网络模型预测结果进行对比发现,无论是单煤、煤掺添加剂还是配煤,CSBP模型较BP模型对煤灰变形温度(DT)的预测都更加精准,平均相对误差分别达到了3.11%、4.08%和4.22%。另外,对比3类样本预测结果发现,无论是CSBP模型还是BP模型,相比单煤预测而言,煤掺添加剂及配煤的预测误差都有明显的增加。  相似文献   

14.
在高温管式电加热炉上进行了三种煤单独燃烧,三种煤添加1%、3%、5%溴化钙与醋酸钙燃烧,以及一种煤添加Fe2O3燃烧实验,燃烧温度为1 250℃。收集了各燃烧过程的飞灰,对收集的飞灰进行了Hg含量测定,并对飞灰进行了比表面积、EDS与XRD表征。实验与分析结果表明,三种煤燃烧后Hgp的生成特性显著不同;三号煤灰的比表面积最大但飞灰颗粒Hg含量及Hgp比率均很低;在添加CaBr2后,三种煤飞灰颗粒Hg含量及Hgp比率均显著增加;在三种煤中添加醋酸钙,及在三号煤中添加Fe2O3后,Hgp含量与比率有所增加,但增加幅度较小。  相似文献   

15.
探索山西晋城煤在灰熔聚流化床气化过程中的结渣机理。采用山西晋城无烟煤,将其破碎到不同粒径,采用XRF、XRD、AFT、SEM和FactSage~(TM)研究了煤的灰分、煤灰化学组成、矿物组成和熔融性随煤样粒径变化规律。结果发现,对于破碎到6 mm以下的晋城煤样,不同粒径子样煤灰化学组成和熔融温度差异不大;对于粉磨到0.2 mm以下的晋城煤粉样品,不同粒径子样化学组成和矿物组成存在较大差异,其中,铁含量差异最明显。AFT和SEM结果都证明,45μm粒径煤粉子样煤灰熔融温度明显高于其他三种样品。Fact SageTM计算得到的液相量变化规律和AFT、SEM观察结果一致,说明煤灰熔融性随粒径变化是煤灰化学成分离析造成的,而SiO2-Al_2O_3-Fe_2O_3三元相图较好地解释了晋城煤煤灰熔融性随粒径变化机理。  相似文献   

16.
利用XANES技术研究了酸处理对义马煤的比表面积、体相及表面硫形态分布和热解过程中硫变迁行为的影响。结果表明,由于酸处理过程中部分镶嵌于有机质中的矿物质被脱除导致部分闭合孔打开,煤的比表面积有所增大。HCl-HF和HCl-HF-HNO_3处理脱除了煤中大部分矿物质和无机硫,由于HNO_3的强氧化性,YMN中亚砜和砜硫化物的相对含量均高于YMR和YMD。相比煤样体相,酸处理过程对表面形态硫的分布产生了更为明显的影响。酸处理煤样热解含硫气体释放量减少,但由于大部分碱性矿物质的脱除和煤中易分解形态硫相对含量的增加,含硫气体释放率增加。不同形态硫之间的内部转化使得酸处理煤焦中主要形态硫的分布更为均匀。通过HCl-HF-HNO_3处理可以有效地脱除煤中矿物质及无机硫,并改变煤中形态硫分布,从而为高灰分、富含黄铁矿的高硫煤的利用提供指导。  相似文献   

17.
对蒙煤与平七煤两种单煤及其按照不同比例组成的混煤,分别在O2/CO2和O2/N2气氛下,采用管式炉燃烧制取灰样;对灰样进行灰熔点、XRD及同步热分析(TG/DSC)测试,并进行相关热力学计算,分析了O2/CO2燃烧方式对混煤灰中矿物质间反应的影响。结果表明,常规灰熔点测试方法测得的两种气氛下的混煤灰熔点没有明显差别。O2/CO2气氛促进了煤灰/混煤灰中钙的碳酸化,且明显抑制了高温下CaCO3的分解。气氛的改变影响了含钙矿物的转化,进而影响了混煤中钙与莫来石反应生成低温共熔物;O2/CO2气氛下钙更易于与莫来石发生反应生成低温共熔物,从而会增加结渣倾向。当混煤中蒙煤比例达到或大于75%时,随着蒙煤比例的逐渐增加,莫来石含量减少,O2/CO2气氛对钙与莫来石之间的反应影响减弱,但对含铁矿物的影响更加明显,使其更易于生成含铁玻璃体,从而也会增加结渣倾向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号