首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
申请公布号:CN104376380A 申请公布日:2015.02.25申请人:北京工业大学
  摘要针对当前污水处理过程出水氨氮浓度测量过程繁琐、仪器设备造价高、测量结果可靠性和精确性低等问题,本发明基于城市污水处理生化反应特性,利用一种递归自组织神经网络实现对关键水质参数氨氮浓度的预测,解决了出水氨氮浓度难以测量的问题;结果表明该递归自组织神经网络能够快速、准确地预测污水处理出水氨氮的浓度,有利于提升污水处理过程出水氨氮浓度质量监控水平和加强城市污水处理厂精细化管理。  相似文献   

2.
针对当前污水处理过程出水总磷TP测量操作繁琐、仪器设备造价高、测量结果可靠性和精确性低等问题,本发明设计了一种基于自组织粒子群–径向基神经网络的污水处理过程出水总磷TP软测量方法,并利用实时数据对出水总磷TP软测量方法进行校正,实现了对污水处理过程出水总磷TP的预测,解决了出水总磷TP难以测量的问题;结果表明该出水总磷TP软测量方法能够快速、准确地预测污水处理出水总磷TP的浓度,有利于加强城市污水处理厂精细化管理和提升实时水质质量监控水平。  相似文献   

3.
申请公布号:CN104360035A 申请公布日:2015.02.18申请人:北京工业大学
  摘要针对当前污水处理过程出水总磷TP测量操作繁琐、仪器设备造价高、测量结果可靠性和精确性低等问题,本发明设计了一种基于自组织粒子群–径向基神经网络的污水处理过程出水总磷TP软测量方法,并利用实时数据对出水总磷TP软测量方法进行校正,实现了对污水处理过程出水总磷TP的预测,解决了出水总磷TP难以测量的问题;结果表明该出水总磷TP软测量方法能够快速、准确地预测污水处理出水总磷TP的浓度,有利于加强城市污水处理厂精细化管理和提升实时水质质量监控水平。  相似文献   

4.
离子型稀土矿柱浸过程氨氮的平衡与迁移转化研究可以对浸矿剂硫酸铵用量的模拟运算提供理论参考。试验以定南某离子型矿土为对象,采用室内柱浸模拟的方式对离子型稀土原矿氨氮的分布、硫酸铵浸矿过程氨氮平衡及尾矿氨氮赋存转化的影响进行了试验。结果发现,离子型稀土原岩风化过程中,还可能伴随着离子相铵盐的生成,在浸矿过程中会伴随稀土一起被浸出,离子相铵盐含量随离子相稀土含量的升高而增加。硫酸铵柱浸过程中残留在尾矿内的氨氮量与浸出液中的氨氮量占比分别为50.76%和49.24%,浸矿剂中半数铵根主要起到保持浸矿过程中铵根浓度的作用,在浸矿后会随浸出液流出。离子型稀土尾矿水溶态和可交换态氨氮在矿土含水率的影响下会发生可逆转化,在尾矿矿土自然风干过程中,尾矿内水溶态氨氮含量占比由63.24%降至32.01%,离子型稀土尾矿水溶态与可交换态氨氮的赋存含量需要前置时间和矿土含水率等条件才能准确定义。  相似文献   

5.
通过某地表水31个监测点氨氮、总氮和总磷的监测数据,分析了该地表水的污染程度及氨氮、总氮和总磷之间的相关性。结果表明,该水体中总氮、总磷的浓度几乎均超过富营养化的临界浓度,水体富营养化严重;该地表水氨氮、总氮和总磷三个监测因子之间具有明显的相关关系,相关系数r为0.815 8~0.995 3。  相似文献   

6.
采用连续流动分析法测定污水中氨氮、总磷的含量。比较了污水样品不同的稀释倍数对测定结果的影响。实验结果表明:氨氮和总磷的质量浓度在0.1~8 mg/L范围内线性良好,线性相关系数均为0.99997;测量结果的相对标准偏差分别为2.01%,0.84%(n=7);方法检出限分别为0.012,0.009 mg/L;质控样测量值均在标示值范围内;样品加标回收率为93.4%~101.1%。污水的洁净程度对测定结果影响较大。洁净度高的污水,直接测定与稀释后测定,测定值无显著性差异;而洁净度低的污水,直接测定与稀释后测定结果差异比较大。该法采用全谱直读CCD检测方式,灵敏度高,稳定性好,无光谱干扰,且支持氨氮和总磷同时测定,方便快捷,适合污水中氨氮和总磷的测定。  相似文献   

7.
选用含钛高炉渣作为吸附剂,研究渣的投加量、粒径大小、温度以及溶液初始pH等因素对含钛高炉渣吸附水中氨氮的影响及吸附特性。动力学数据分析表明,准二级动力学模型能更好地描述含钛高炉渣对氨氮的吸附;颗粒内扩散方程拟合结果发现,含钛高炉渣对氨氮的吸附包括表面吸附和颗粒内扩散两个阶段。吸附等温线拟合表明Langmiur方程能够更好地模拟含钛高炉渣对氨氮的吸附过程。在20℃、反应时间4h的条件下,对于100mL浓度为100mg/L的氨氮溶液,8g粒径为80~120目的含钛高炉渣对氨氮的去除率可以达到32%;随着温度的升高,去除率基本呈上升趋势;溶液初始pH对氨氮的去除有一定的影响,在碱性条件下有较好的去除效果。  相似文献   

8.
工业废水中氨氮与总磷相关关系探讨   总被引:3,自引:0,他引:3  
氨氮和总磷作为环保中主要污染物排放总量控制的物质 ,氨氮和总磷是植物性营养物 ,这些污染物排入水体 ,很容易引起藻类及其它浮游生物大量繁殖 ,形成富营养化污染 ,在不同排污口 ,由于其来源、组成成分等差异而存在各自特定的氨氮 总磷相关关系 ,本文对近年来市区几个固定工业废水固定排放口的监测数据综合分析 ,用线性函数 y =bx +a的形式对氨氮 总磷进行一元线性回归 ,并作回归显著性检验 ,结果表明 ,这几个固定排放口 ,氨氮与总磷都存在极显著的线性关系 ,确定此关系 ,可以通过氨氮的测定 ,预测总磷的含量 ,并由此确定测定总磷的…  相似文献   

9.
滤压式电解槽中氨氮间接电氧化反应动力学   总被引:1,自引:1,他引:0  
研究了模拟氨氮废水在滤压式电解槽中的电化学氧化过程. 结果表明, 在一定浓度Cl-的存在下, 氨氮化合物的间接电氧化过程符合二级反应动力学规律. 利用Hatta准数进一步分析电解槽内反应的空间分布得知, 不同条件下的Hatta准数均小于0.3, 这说明氨氮化合物的间接电氧化过程主要发生在慢反应动力学区域, 即发生在本体溶液中.  相似文献   

10.
茚三酮分光光度法测定水中氨氮   总被引:1,自引:0,他引:1  
根据茚三酮在一定条件下可与氨发生显色反应的原理,提出了利用茚三酮测定氨氮含量的新方法,探讨了显色剂和还原剂用量、介质环境、反应温度及反应时间等条件对反应体系的影响。在优化条件下测定了氨氮的工作曲线,在实际样品测量中,与纳氏试剂分光光度法进行了比较。氨氮检测范围0.01~5 mg/L,优于纳氏试剂法,可广泛应用于检测机构的水质检测活动。  相似文献   

11.
钙型沸石对生活污水中氨氮去除的研究   总被引:4,自引:0,他引:4  
通过静态方法研究了钙型沸石对氨氮的去除效果.氨氮在钙型沸石上的吸附是吸热过程,饱和吸附容量是46.29mg/g.经过10次吸附-解析-再吸附循环过程,从吸附容量的数据可知盐酸和氯化钠可以获得很好的再生效果,吸附容量的标准偏差分别为6.34%和6.59%.对生活污水中氨氮的去除效果表明,在废水处理过程中钙型沸石将是一种实用和廉价的氨氮吸附剂。  相似文献   

12.
利用吸附动力学实验研究了浮石、陶结和陶粒对氨氮和磷的吸附动力学特征.结果表明:浮石对氨氮与磷的吸附容量明显比陶结和陶粒的大.人工湿地填料浮石和陶粒对氨氮与磷,以及陶结对氨氮的等温吸附动力学特征均可以用准一级、准二级和Bangham模型加以描述.其中浮石对氨氮和磷以及陶结对氨氮的吸附以化学吸附反应控制为主,而陶粒对磷的吸附过程则以扩散反应控制为主.三种填料对氨氮和磷的吸附均以表面吸附为主.  相似文献   

13.
提出了三氯异氰脲酸-水杨酸光度法测定植物样品中氨氮含量的方法。在碱性条件下,三氯异氰脲酸、水杨酸与氨氮发生灵敏的显色反应,生成蓝色化合物,该化合物的最大吸收峰位于660 nm波长处,表观摩尔吸光率为9.78×10~4L·mol·cm~(-1),氨氮质量浓度在6.0mg·L~(-1)以内符合比耳定律,该方法用于植物样品中氨氮含量的测定,结果与元素分析法测定值相符。  相似文献   

14.
研究在纳氏试剂光度法(GB7479-1987)的基础上,利用便携式分光光度计进行环境水质样品中氨氮含量的现场快速测定。氨氮浓度在0.00~2.00mg/L与吸光度呈良好的线性关系,线性相关系数r=0.9998,检出限为0.04mg/L,样品的加标回收率为90%~106%,测定结果的相对标准偏差为1.21%~4.27%(n=6)。该方法的测定结果与标准法测定结果无显著性差异,可以用于现场快速测定水和废水中的氨氮。  相似文献   

15.
氨氮水平是评价自然水环境的重要指标,但目前环境水样中氨氮的分析检测面临基质干扰严重和无法现场快速分析等问题。本研究依据我国环境保护标准《水质氨氮的测定水杨酸分光光度法》(HJ 536–2009)的基本原理,基于顺序注射系统研制了氨氮在线检测装置。通过分别研制适于顺序注射系统联用的氨氮转换反应系统、显色反应系统和检测系统,实现了复杂基质水体中氨氮的在线检测分析。其中,检测系统以发光二极管作为光源、光电转换器作为检测器、聚氯乙烯管作为检测流通池组装而成,显著减小了装置体积、能耗以及制作成本。利用此装置仅需12 min即可测定单一水质样品中的氨氮,检出限(LOD)为0.65μmol/L(S/N=3),精密度(RSD,n=7)为4.3%(C=10μmol/L)和4.2%(C=500μmol/L),线性范围上限可达1000μmol/L。干扰测试结果表明,环境水体中常见的共存离子和组分等对氨氮分析无显著影响,可直接利用此装置分析水库水、污水、海水和垃圾渗滤液中氨氮的浓度。利用此装置分析实际水体中氨氮的结果与我国环境保护标准(HJ 536–2009)方法的测定结果无显著性差异,加标回收率在92.3%...  相似文献   

16.
氨氮含量的高低是衡量湖泊和水库水体富营养化的指标之一,水体中的氮元素极易诱发水体富营养化。目前,国标中通过比色法来检测氨氮含量的方法主要有靛酚蓝分光光度法和纳氏试剂分光光度法。根据高等教育国家标准中对于培养大学生的创新实践、科研意识、实验动手能力的要求,依照检测水体中氨氮含量的国家标准,检测了济南市区内三大名泉(趵突泉、黑虎泉、五龙潭)、大明湖、聊城东昌湖以及天津海河的水体样品中的氨氮浓度,并把山东师范大学的生活自来水作为对比样品,比较了比色法检测水体中氨氮含量的两种检测方法的差异。更重要的是,学生从检测过程中的得失领悟到了采用比色法检测、分析样品的方法技巧。结果表明,通过不断地完善检测方案,两种方法的标准曲线相关系数均达到0.9999以上。在实验操作中,由于操作过程和操作手法的不同(例如显色剂浓度、标准溶液的取用技巧以及各溶剂混合之后放置时间的长短等),获得了不同的实验结果,对实验结果的异常现象出现的原因进行了分析,同时讨论了两种检测方法的不同。  相似文献   

17.
采用溶胶-凝胶法制备了Ti O_2,并使Ti O_2负载在浮石上制备Ti O_2/浮石光催化剂。用X射线荧光光谱(XRF)、电镜扫子显微描(SEM)和傅里叶红外光谱(FT-IR)表征浮石、Ti O_2及Ti O_2/浮石。在太阳光照射下,用Ti O_2/浮石处理模拟氨氮废水,以废水中氨氮降解率为标准,考察影响氨氮降解因素。结果表明,Ti O_2成功固定在浮石表面,负载率为3.71%;废水中氨氮降解率随太阳光照射时间、废水p H值、催化剂Ti O_2/浮石含量增加而增大。当初始氨氮浓度为500 mg/L、太阳照射180 min、废水p H=11、催化剂Ti O_2/浮石剂量为20 g/L时,氨氮降解率达82.0%,氨氮除去率86.8%,降解产物中未发现污染成分NO_2~-和NO_3~-产生。催化剂再生/催化3次,每次再生后氨氮降解率约下降10.0%。该方法快速、简单、低消耗和产生二次污染少,能有效地降解废水中的氨氮。  相似文献   

18.
气相分子吸收光谱法测定环境地表水中氨氮含量的标准方法研究还不全面,因此考察了水样的保存、亚硝酸盐、Ca^(2+)、Mg^(2+)、I^(-)、硫化物对其测定结果的影响.结果表明,采集地表水样后立即加入硫酸使水样酸化至pH<2,密闭,可延长样品保存时间至7 d,但尽量在24 h内进行测定;气相分子吸收光谱法测定氨氮水样时,当亚硝酸盐含量较高时,在氨氮除亚氮功能模式下已不能消除干扰,必须在水样分析前采用加热煮沸或预蒸馏前处理方式;水中Ca^(2+)、Mg^(2+)、25倍以下质量浓度的I^(-)和10倍质量浓度以下的硫化物对气相分子吸收光谱法氨氮测定没有显著干扰.本方法的检出限(3.143s)为0.02 mg·L^(-1),按标准加入法进行回收试验,回收率为94.7%~101%,测定值的相对标准偏差(n=6)为0.70%~4.7%.采用气相分子吸收光谱法分析标准样品,其测定结果均在标准样品认定值的允许偏差范围内.与纳氏试剂分光光度法的测定结果相比,预蒸馏-气相分子吸收光谱法具有更好的精密度和准确度.  相似文献   

19.
建立基于智能手机与自制比色装置的数字图像比色法完成对水中氨氮的快速测定。以水杨酸钠为显色剂,三聚氰酸二氯钠为氧化剂,亚硝基铁氰化钠为催化剂,在碱性条件下与水中氨氮反应生成蓝色化合物,通过正交试验对反应条件进行优化。通过自制数字图像比色装置对显色溶液进行手机拍照分析,将经过色彩选择器(color picker)软件获得的RGB值和空白值基础上计算得出的欧氏距离D值应用于图片比色,对氨氮进行定量测定。氨氮质量浓度在0.05~2.0 mg/L与D值呈线性关系,相关系数(r)为0.998,检出限为0.03 mg/L,测定下限为0.12 mg/L。以空白水样为基体进行加标回收试验,氨氮回收率为98.7%~106.0%,测定结果的相对标准偏差为1.1%~7.4%(n=6)。实际样品该法分析结果与分光光度法基本一致。该方法可用于水样中氨氮的现场快速测定。  相似文献   

20.
Zn^2+—na^+离子交换动力学I.溶液浓度和搅拌速度的影响   总被引:3,自引:0,他引:3  
本文采用测量液相浓度变化和X射线电子探针分析树脂颗粒内浓度分布两者相结合的方法,研究了强酸性阳郭树脂上Zn^2+-Na^+交换的动力学,讨论了溶液浓度和搅拌速度对交换过程的影响以及在判断交换速率控制机理时应注意的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号