首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将柠檬酸三钠与硼氢化钠还原氯金酸制备纳米金颗粒,采用一步恒电位沉积的方法在碳纤维超微电极上沉积纳米金颗粒,并对电极进行电化学表征。分别对100μmol/L DA、1mmol/L AA在该电极上修饰前后的电化学行为进行了研究,结果表明在浓度为1 mmol/L抗坏血酸共存下,DA的浓度(0. 1~10μmol/L)与氧化峰电流成正比,线性回归方程为Ip(μA)=200 c(μmol/L)+2×10~(-4),相关系数R~2=0. 9979,线性范围0. 1~10μmol/L,检出限为1. 28×10~(-2)μmol/L (S/N=3)。方法可用于较高浓度抗坏血酸共存下对多巴胺的选择性测定。  相似文献   

2.
用石墨烯-聚乙烯醇-钯修饰电极(GN-PVA-Pd/GCE)测定水产品中的克林沙星(CFN)。研究了CFN在GN-PVA-Pd/GCE上的电化学行为,并探讨了示差脉冲伏安法检测CFN的可行性。结果表明,在pH=10、扫速=100m V·s-1的条件下,GN-PVA-Pd/GCE修饰电极对CFN的响应效果最好,检测CFN的线性范围分为两段,在0.09~5.4μM CFN浓度区间,峰电流与CFN浓度的线性关系为I(μA)=0.998 CCFN(μM)+0.034;在5.4~72μM CFN浓度区间,线性关系为I(μA)=0.207CCFN(μM)+4.154。检出限为0.03μM(信噪比S/N=3)。GN-PVA-Pd/GCE用于检测水产品中CFN,加标回收率为96.7%~106.6%,RSD为2.8%~3.9%。  相似文献   

3.
直接电沉积金纳米粒子修饰氧化铟锡电极测定亚硝酸根   总被引:2,自引:0,他引:2  
以电化学沉积法一步制得了金纳米粒子(GNP)修饰氧化铟锡(ITO)电极,采用紫外、扫描电镜及循环伏安法对GNP/ITO修饰电极进行了表征。结果表明,金纳米粒子在ITO电极表面呈球形,分布均匀无团聚,粒径约30 nm。该修饰电极具有良好的电化学性能,在pH 2.2的Na2HPO4-柠檬酸缓冲溶液中其氧化峰电流与NO2-的浓度呈良好的线性关系,线性范围为5×10-6~5.5×10-4mol/L,线性回归方程为:i(μA)=1.07 136C(mmol/L),相关系数r=0.9969;检出限可达1.0×10-6mol/L。该修饰电极用于废水中NO2-的测定,结果令人满意。  相似文献   

4.
采用自组装的方法制备了纳米银粒子修饰金电极,并运用循环伏安法、交流阻抗谱探讨了该电极的电化学特性.研究了高氯酸二茂铁在该修饰电极上的直接电化学行为.实验结果表明,高氯酸二茂铁在该修饰电极上具有良好的电流响应.用示差脉冲法测定高氯酸二茂铁,其氧化峰电流与浓度在4.0×10-6~5.0×10-4 mol/L范围呈良好线性关系,线性方程为:Ip(μA)=0.0236c(μmol/L)-0.0975,线性相关系数为0.9982,检出限为2.3×10-7 mol/L(信噪比为3).  相似文献   

5.
建立了预阳极化碳糊电极(PACPE)测定肾上腺素(EP)的新方法。实验表明,EP在PACPE上有很好的电化学响应,在pH 7.00的PBS缓冲溶液中,EP的氧化峰电流最大,且与其浓度在2.0×10-7~1.0×10-4mol/L范围内呈良好的线性关系,线性方程为:Ip(μA)=0.4598+0.1544c(μmol/L),相关系数R=0.9981,检出限为2.9×10-8mol/L。方法可用于注射液中EP含量的测定。  相似文献   

6.
将金纳米粒子电沉积在石墨烯修饰的玻碳电极表面,研究了维生素B6(VB6)在该修饰电极上的电化学行为。扫描电镜用于该修饰电极组装过程的形貌表征。实验结果表明:VB6在此修饰电极上出现一个良好的氧化峰,在最佳实验条件下,其氧化峰电流与VB6浓度在5.0×10-8~2.0×10-5 mol/L范围内呈线性关系,其线性回归方程为I(μA)=0.5697c(μmol/L)+0.06275,R=0.9992,检出限为2.0×10-8 mol/L(S/N=3)。一些常见的干扰物质如抗坏血酸不干扰VB6的检测。方法已用于片剂中VB6的含量的检测。  相似文献   

7.
采用了滴涂法制备了还原氧化石墨烯@DNA修饰电极,采用了循环伏安法(CV)和差分脉冲伏安法(DPV)两种电化学方法,探究了还原氧化石墨烯@DNA修饰电极对Cu~(2+)电催化活性和氧化峰电流与Cu~(2+)浓度之间的关系。实验结果表明,DNA和还原氧化石墨烯所修饰的电极对Cu~(2+)具有优异的电催化活性。即时电流响应信号同Cu~(2+)的浓度线性方程为i(μA)=-2.098 8-0.538 5c(×10~(-5) mol/L),线性相关系数R=0.996,最低检出限为1×10~(-8) mol/L。并且修饰电极具有良好的重现性和稳定性。  相似文献   

8.
制备了铂纳米/壳聚糖/石墨烯修饰电极。研究了鸟嘌呤(G)在修饰电极上的电化学行为。结果表明,该修饰电极对G的氧化具有明显的电催化作用。利用示差脉冲伏安法(DPV)对G进行检测,在0.1~10μmol/L浓度范围内,G的氧化峰电流和浓度成良好的线性关系,线性方程为I(μA)=2.08-1.92c(×10~(-5)mol/L),相关系数为0.9977,检测限为32 nmol/L(S/N=3)。该修饰电极用于血清样品中G的检测。  相似文献   

9.
利用电聚合茜素黄R(AYR)的方法,将辣根过氧化物酶(HRP)和细胞色素c(Cyt c)固载于通过一步法电沉积的碳纳米管-金纳米粒子(MWCNTsAu NPs)复合纳米材料修饰电极表面,构筑PAYR-HRP-Cyt c/M WCNTs-Au NPs修饰电极,并利用HRP对H2O2的直接电化学催化行为对H2O2进行检测。采用扫描电镜对MWCNTs-Au NPs和PAYR-HRP-Cyt c的表面形貌进行表征。利用电化学阻抗对修饰电极的构筑过程进行了监测。采用循环伏安法和计时电流法对修饰电极的电化学行为进行了研究。探讨了p H和电位对该修饰电极测定H2O2的性能的影响。该传感器对H2O2在5.0×10-7~3.14×10-3mol/L范围内呈良好的线性响应,相关系数为0.9997,灵敏度为0.50 A·L/mol,检出限(S/N=3)为9.6×10-8mol/L。  相似文献   

10.
制备出CeO2纳米晶包裹碳纳米管修饰玻碳电极,并运用循环伏安法、交流阻抗谱探讨了该电极的电化学特性。研究了特布他林在该修饰电极上的直接电化学行为。实验结果表明,特布他林在该修饰电极上具有良好的电流响应,与裸玻碳电极相比在pH 7.0缓冲溶液中氧化峰电位负移314 mV。采用计时电流法测定特布他林,其氧化峰电流与浓度在5.0×10-7~1.0×10-4mol/L范围呈良好线性关系,线性方程为:Ip(μA)=4.952-0.04724c(μmol/L),线性相关系数为0.9920,检出限为5.0×10-8mol/L(信噪比为3)。该电极已用于特布他林片剂中特布他林的测定。  相似文献   

11.
通过电沉积金属铜于单壁碳纳米管( SWNTs)/Nafion 修饰的玻碳电极表面构建了一种经济且制备简单的多巴胺传感器。该纳米材料的形貌和成分用扫描电镜和能谱仪表征。不同扫速和pH条件下,以其修饰玻碳电极构建的电化学体系受吸附控制。多巴胺在该电极表面的反应机理为两电子双质子的过程,电荷转移系数α=0.6,电子转移数n=2.67,异相电子转移速率ks=1.38 s-1。在优化条件下,用微分脉冲伏安法检测多巴胺的线性方程为Ipa(μA)=-0.054c(μmol/L)-3.82(R2=0.9988),线性范围5~100μmol/L,检出限为0.014μmol/L(S/N=3)。此传感器制备简单、成本低、灵敏性高、稳定性好、重现性好,检测人尿液中多巴胺的回收率为96.5%~100.4%,相对标准偏差为1.2%~2.4%。  相似文献   

12.
碳纳米管修饰电极的电化学行为及对酪氨酸的测定   总被引:1,自引:1,他引:0  
将经超声波处理的多壁碳纳米管液滴涂于碳糊电极上制成修饰电极(MWNTs/CPE).应用循环伏安法研究了酪氨酸(Tyr)在修饰电极上的电化学行为.测定结果表明,酪氨酸在3.5×10<'-6>~2.0×10<'-3>moL/L浓度范围内与峰电流成良好的线性关系.回归方程为Ip(μA)=0.058c(μmol/L)+5.21...  相似文献   

13.
将金纳米棒(AuNRs)和辣根过氧化物酶(HRP)以自组装的方式依次修饰到Au电极表面,构建了响应过氧化苯甲酰(BPO)生物传感器。采用循环伏安法和电流时间法研究了传感器的电化学性质和最佳工作条件;由于HRP/AuNRs复合膜的协同效应,电极性能得到显著改善。在最佳工作条件下(工作电压-0.02V,pH 7的磷酸盐缓冲体系),BPO浓度在5.0×10-6~1.0×10-4 mol/L范围内与电极的电流响应值呈良好的线性关系,线性回归方程为:i(μA)=12.6796C(mmol/L)+0.2406,R=0.9993。电极的检出限为8.5×10-7 mol/L。电极用于面粉中BPO的测定,平行测定6次,平均回收率为97.9%~100.1%,相对标准偏差(RSD)为0.5%~2.1%。本方法用于商品面粉中的BPO测定,取得满意结果。  相似文献   

14.
制备了新型多壁碳纳米管-纳米金-壳聚糖复合材料修饰的丝网印刷电极(SPE),研究了氨茶碱在该电极上的电化学行为,并优化了缓冲液pH、富集时间、扫描频率等测定条件。在最适条件下,以方波伏安法(SWV)测得氨茶碱在1.0V左右有灵敏的氧化峰,氧化峰电流大小和氨茶碱浓度在10~200μmol/L范围呈良好的线性关系,检出限为1μmol/L。标准曲线:Ip(μA)=0.0419c(μmol/L)+0.6303,R=0.9954。本实验对不同给药时间小鼠的氨茶碱血药浓度进行了测定,并与高效液相色谱法(HPLC)测定结果进行比较。本方法修饰得到的丝网印刷电极系统应可用于实际血样中氨茶碱血药浓度的测定。  相似文献   

15.
郭宪厚  王学亮  郁章玉 《应用化学》2014,31(12):1465-1471
利用循环伏安法制备了石墨烯/铂纳米粒子杂化膜修饰电极,并利用该修饰电极研究了肾上腺素(EP)的电化学行为,建立了测定肾上腺素的电化学方法。 分别利用扫描电子显微镜(SEM)和循环伏安法对电极表面的形貌和电化学性能进行了表征。 试验优化了修饰电极制备过程中影响电极性能的条件和EP的测定条件。 试验结果表明,石墨烯/铂纳米粒子修饰电极对肾上腺素有明显的电催化作用。 在pH=5.0的柠檬酸 磷酸氢二钠缓冲溶液中,EP的氧化峰电流与其浓度在4.4×10-8~2.2×10-6 mol/L的范围内呈良好的线性关系。 线性方程为ipa(10 μA)=0.0753c(mol/L)+3.7653×10-5,r=0.9989,检出限为2.2×10-9 mol/L(S/N=3)。 修饰电极表具有良好的重现性,可用于实际样品的测定。  相似文献   

16.
多壁碳纳米管修饰电极检测盐酸氯丙嗪的研究   总被引:1,自引:0,他引:1  
制备了多壁碳纳米管修饰玻碳电极,采用循环伏安法(CV)研究了盐酸氯丙嗪在修饰电极上的电化学特性,发展了一种新的检测盐酸氯丙嗪的电化学分析方法。在最佳实验条件下,用循环伏安法检测盐酸氯丙嗪,其响应电流与盐酸氯丙嗪的浓度在8.0×10-5~1.0×10-3mol/L范围内有很好的线性关系,线性方程为Ip(A)=0.0106c(mol/L)-8×10-8(R2=0.999,n=6),检出限为6.2×10-6mol/L(S/N=3)。方法可用于盐酸氯丙嗪片的测定。  相似文献   

17.
对巯基苯硼酸/纳米金修饰玻碳电极用于葡萄糖的识别   总被引:2,自引:2,他引:0  
采用自组装技术,将对巯基苯硼酸(MPBA)自组装于带正电荷纳米金(nano-gold,NG)修饰的玻碳电极(GCE)表面,从而制得用于识别葡萄糖的无酶传感器(MPBA/NG/GCE).通过交流阻抗技术和循环伏安法考察了MPBA/NG/GCE修饰电极的表面电化学特性,同时研究了葡萄糖在该修饰电极上的电化学行为,讨论了利用该修饰电极测定葡萄糖的最佳条件.结果表明:在优化的条件下,氧化峰电流与葡萄糖浓度在1.0~150.0 mmol/L范围内呈良好的线性关系,其回归方程为ΔIp (μA)=3.37+0.342c(mmol/L),相关系数为r=0.999,检出限为3.8×10-5 mol/L (S/N=3),可用于葡萄糖分子的电化学识别.  相似文献   

18.
将丝素还原HAuCl4制备的纳米金/丝素溶胶修饰在金电极表面制备了纳米金/丝素复合膜修饰电极,用于对苯二酚的催化氧化。实验表明,该修饰电极具有很好的电化学性能,在pH3.55磷酸盐缓冲溶液中以该修饰电极对对苯二酚进行检测,对苯二酚在4.0×10-6~1.0×10-4mol/L浓度范围内,其氧化峰电流与浓度呈良好的线性关系,其线性回归方程为i(μA)=0.2614 5.3539c,r=0.9995;检出限为2.0×10-7mol/L,灵敏度良好,用于实际样品分析,结果令人满意。  相似文献   

19.
金君  柯娟  于浩  刘晓莉 《分析试验室》2019,38(12):1440-1443
采用三步化学合成法制备了二氧化铈/还原氧化石墨烯/二氧化硅球(CeO_2/ERGO/SiO_2)复合纳米粒子,用X-射线粉末衍射(XRD)技术对其进行了表征,并用于修饰电极(CeO_2/ERGO/SiO_2/CPE)的制备,研究了修饰电极的电化学行为及其对苯酚的电催化活性。在最优实验条件下,苯酚的浓度在0. 2~143μmol/L范围内,与峰电流呈良好的线性关系,线性方程为i(μA)=-4. 00 c(μmol/L)-16. 77,检出限为0. 1μmol/L。方法用于实际样品延河水中苯酚含量的测定,样品回收率在97. 0%~102. 8%之间。  相似文献   

20.
以3-氨基苯硼酸为功能单体,葡萄糖为模板分子,在碳量子点和壳聚糖修饰的玻碳电极表面电聚合生成分子印迹聚合物膜,构建了无酶分子印迹电化学传感器,用于葡萄糖的高灵敏测定。采用循环伏安法(CV)、交流阻抗法(EIS)和差分脉冲伏安法(DPV)研究传感器的电化学特性及分析特性。在最优条件下,DPV电流响应的变化值与葡萄糖浓度在0.1~1.0μmol/L和1.0~300μmol/L范围内分别呈现良好的线性关系,线性方程分别为ΔIp(μA)=3.792+23.41C (R2=0.9968)和ΔIp(μA)=28.18+0.1316C (R2=0.9914),检出限为0.034μmol/L (3σ/k)。将此传感器应用于体液中葡萄糖的测定,回收率为95.1%~106.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号