首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了分散液液微萃取–气相色谱法同时测定地表水中甲草胺和乙草胺的含量。以甲醇为分散剂,四氯化碳为萃取剂,水样经分散液液微萃取富集后用HP–5MS型色谱柱分离,采用气相色谱法和氢火焰离子化检测器进行定量分析。甲草胺和乙草胺的质量浓度在0.00~50.0μg/L范围内与色谱峰面积呈良好的线性关系,相关系数均大于0.999,方法检出限为0.03μg/L。测定结果的相对标准偏差均小于2%(n=7),样品加标回收率为92.6%~105.3%。该方法操作简便,富集效率好,有机试剂用量少,适用于地表水中甲草胺和乙草胺的测定。  相似文献   

2.
采用液液萃取–气相色谱法测定地表水中硝基苯的含量。采用盐酸调节水样至pH值为4左右,在200mL水样中加入8 g氯化钠,以甲苯为萃取剂,以CD–5MS色谱柱进行分离,氢火焰离子化检测器检测地表水中硝基苯的含量。硝基苯的质量浓度在10~150μg/L范围内与色谱峰面积呈良好的线性关系,线性相关系数r=0.999 4,方法检出限为0.24μg/L。加标回收率在91.6%~96.7%之间,测定结果的相对标准偏差小于3(n=7)。该方法操作简便,灵敏度高,适用于地表水中硝基苯的分析。  相似文献   

3.
建立了液-液萃取气相色谱法测定地表水中痕量苯酚的方法。用盐酸调节水样至pH2左右,以二氯乙烷-乙酸乙酯(体积比为2∶1)混合溶液为萃取剂,以CD-5色谱柱进行分离,氢火焰离子化检测器检测苯酚的含量。苯酚的质量浓度在1.00~20.0μg/L范围内与其色谱峰面积呈良好的线性关系,线性相关系数r=0.999 3,检出限为0.03μg/L。样品加标回收率为93.0%~97.0%,测定结果的相对标准偏差小于2%(n=7)。该方法检出限低,精密度和准确度高,操作简便,适用于地表水中微量苯酚的分析。  相似文献   

4.
建立液液微萃取–气相色谱法测定地表水中五氯酚的方法。利用液液微萃取技术对水样进行富集预处理,萃取剂:氯苯,体积为80μL;分散剂:甲醇,体积为0.8 mL;氯化钠加入量为0.4 g。样品萃取液用气相色谱测定,内标法定量。五氯酚的质量浓度在0.00~60.0μg/L范围内与色谱峰面积呈良好的线性关系,线性相关系数为0.999 4,检出限为0.8μg/L。7次测定结果的相对标准偏差小于3%,加标回收率为94.1%~102.4%。该方法操作方便、快捷,富集效率高,有机溶剂用量少,检出限低,测定结果准确可靠,适用于地表水中痕量五氯酚的测定。  相似文献   

5.
建立分散液液微萃取-气相色谱–质谱测定水中3种硝基甲苯同分异构体的方法。水中硝基甲苯用分散液液微萃取富集后经CD–5MS色谱柱分离,采用气相色谱质谱法测定。3种硝基甲苯同分异构体的质量浓度在0.0~40.0μg/L范围内与色谱峰面积均具有良好的线性关系,相关系数大于0.999,方法检出限为0.03~0.04μg/L。测定结果的相对标准偏差均小于2%(n=7),样品加标回收率为90.2%~95.9%。该方法操作简便,萃取效率高,有机试剂用量少,适用于环境水样中硝基甲苯的检测。  相似文献   

6.
建立了气相色谱法测定输血袋中邻苯二甲酸二乙酯(DEP)迁移量的方法。样品采用液液萃取前处理技术,通过正交试验对样品中DEP萃取条件进行系统优化,气相色谱内标法测定。在0.5~10μg/m L范围内,回归方程线性关系良好(r=0.9991),检出限为0.0023μg/m L,定量限为0.0076μg/m L,平均回收率为90.54%~98.01%,相对标准偏差为1.0%~2.9%。采用本法测得两批输血袋中DEP迁移量分别为0.0515μg/m L和0.0006μg/m L。  相似文献   

7.
采用分散液液微萃取–气相色谱法测定地表水中3种三氯苯同分异构体。实验考察了萃取剂及其用量、分散剂及其用量对萃取效率的影响。实验结果表明,三氯苯3种同分异构体在质量浓度2.00~64.0μg/L范围内线性良好,测定结果的相对标准偏差均小于4%(n=7),平均加标回收率为94.1%~103.9%。该方法操作简便、快捷,有机试剂用量少,样品富集倍数高。三氯苯3种同分异构体的检出限分别为0.03,0.04,0.03μg/L,测量精密度和准确度能满足分析测度要求,适用于地表水中痕量三氯苯的测定。  相似文献   

8.
建立了悬浮固化-分散液液微萃取-气相色谱法测定野木瓜中9种有机氯农药残留量的方法。样品经石油醚提取、浓硫酸净化、悬浮固化-分散液液微萃取法浓缩后,用气相色谱-电子捕获检测器(GC-ECD)检测,外标法定量。结果表明,9种农药含量在1~100μg/L范围内线性关系良好,相关系数R2在0.99以上,方法检出限(S/N=3)为0.01~0.07μg/kg。9种有机氯农药在1.75,7.00,28.0μg/kg 3个水平添加下,平均回收率范围为83.3%~116.7%,相对标准偏差(RSD)范围为1.5%~14%,方法已用于野木瓜中9种有机氯农药残留的测定。  相似文献   

9.
建立了漩涡辅助分散液液微萃取(VAEDLLME)结合气相色谱测定环境水样中12种多环芳烃的方法。对萃取剂种类和体积、漩涡时间以及盐浓度的影响等参数进行优化。实验结果表明,方法线性范围为0.1~5.0μg/L,相关系数r≥0.9851,检出限为0.001~0.01μg/L,加标回收率为95.0%~124.4%,相对标准偏差(RSD)为1.4%~27%。方法适用于环境水样中12种多环芳烃的分析检测。  相似文献   

10.
建立液液萃取–气相色谱–质谱法测定地下水中32种半挥发性有机化合物的方法。采用二氯甲烷和正己烷为萃取溶剂,经DB–5MS UI型色谱柱(30 m×0.25 mm,0.25μm)分离,选择离子扫描模式监测,内标法定量。32种半挥发性有机化合物的质量浓度在2-100μg/L的范围内与色谱峰面积具有良好的线性关系,相关系数均大于0.995,方法检出限为0.001-0.006μg/L,平均回收率为76.0%-126%,测定结果的相对标准偏差为2.30%-14.1%(n=6)。该方法能够满足地下水中32种半挥发性有机化合物的同时测定。  相似文献   

11.
建立了气相色谱法测定甲醇中邻二硝基苯、间二硝基苯、对二硝基苯、邻硝基氯苯、间硝基氯苯、对硝基氯苯、2,4-二硝基氯苯7种硝基苯混合溶液的方法。采用Rxt-5MS型色谱柱(30 m×0.25 mm,0.25μm),设置程序升温,使用FID检测器进行测定,分析了7种硝基苯的色谱保留时间与理化性质的关系。7种硝基苯的质量浓度在10~200μg/mL范围内与色谱峰面积线性关系良好,相关系数均大于0.999,方法检出限为0.003~0.007μg/mL。测定结果的相对标准偏差为0.62%~4.03%(n=6),样品加标回收率为95.7%~101.4%。该方法适用于环境中硝基苯检测。  相似文献   

12.
建立了一种简单、快速、有效测定中药甘草中5种邻苯二甲酸酯(DBP、BBP、DCHP、DEHP、DNOP)的分散液液微萃取-气相色谱/质谱(DLLME-GC/MS)检测方法。甘草样品经甲醇浸泡提取,水分散和盐析后用100μL四氯化碳萃取浓缩,采用GC/MS法测定,标准曲线定量。5种目标物在1~5 000μg/L范围内呈良好的线性关系,相关系数均大于0.9990,方法的检出限和定量限在0.16~0.58μg/kg和0.34~1.92μg/kg范围。在3个加标浓度水平下的平均回收率为87.80%~120.63%,相对标准偏差小于7.43%。该方法适用于不同产地中药材甘草中环境激素邻苯二甲酸酯类残留的测定。  相似文献   

13.
建立液液萃取气相色谱法测定饮用水中二氯一溴甲烷和一氯二溴甲烷的方法。在200 m L水样中加入26g硫酸钠,以正己烷为萃取剂,用DB–5毛细管柱进行分离,以电子捕获检测器进行检测。二氯一溴甲烷和一氯二溴甲的质量浓度在0~50μg/L范围内与色谱峰面积均呈良好的线性,线性相关系数大于0.999,检出限均为0.01μg/L。水样加标回收率在92.4%~102.5%之间,测定结果的相对标准偏差均小于3%(n=7)。该方法操作简便,灵敏度高,适用于生活饮用水中二氯一溴甲烷和一氯二溴甲烷的测定。  相似文献   

14.
对比研究了吹扫捕集/气相色谱-质谱法(PT/GC-MS)和液液萃取-气相色谱/电子捕获检测器(LLE-GC/ECD)检测饮用水中碘代三卤甲烷(I-THMs)的分析方法。结果表明,采用甲基叔丁基醚(MTBE)作为萃取剂直接液液萃取,LLE-GC/ECD检测更适于I-THMs的分析。在选定条件下,内标法定量,6种ITHMs在0.5~1 000μg/L范围内线性关系良好,相关系数均大于0.99,相对标准偏差(RSD,n=7)为3.9%~6.4%,方法检出限为0.05~0.11μg/L。0.5,2.0,10.0μg/L加标水平下,分别对某地表水、水厂滤后水和自来水进行I-THMs的加标回收实验,平均回收率为81.2%~108.6%,RSD为2.6%~7.7%。结果表明,该方法简便、快速、灵敏,适用于饮用水中新兴消毒副产物I-THMs的检测。  相似文献   

15.
以联苯-联苯醚混合物为萃取剂,建立了分散液液微萃取-气相色谱电子捕获检测器测定饮用水中7种挥发性卤代烃的方法。此萃取剂为无卤素萃取剂,密度大于水,可通过离心分离,萃取过程可在3 min内完成。对萃取剂用量、分散剂种类及用量、萃取时间、萃取温度等条件进行了优化。5.00 m L水样用200μL萃取剂和0.30 m L分散剂(甲醇)的混合物进行萃取,室温下萃取30 s,7种挥发性卤代烃的萃取率≥90%,富集倍率为22.5~24.7。萃取液经DB-624毛细管柱分离,用电子捕获检测器定量检测,检出限为0.003~0.032μg/L。检测三氯甲烷的线性范围为0.500~100.0μg/L,三氯乙烯和三溴甲烷的线性范围为0.100~20.0μg/L,四氯化碳、四氯乙烯、二氯一溴甲烷、一氯二溴甲烷的线性范围为0.050~10.0μg/L。在上述线性范围内,工作曲线的相关系数≥0.998。方法的相对标准偏差在2.1%~7.6%之间,加标回收率在93.0%~102.9%之间。  相似文献   

16.
建立液液萃取–气相色谱法测定水体中环己酮含量的分析方法。水样用二硫化碳萃取,萃取液经无水硫酸钠脱水后,用气相色谱法测定环己酮的含量。环己酮的质量浓度在0~18.16 mg/L范围内与色谱峰面积线性良好,线性相关系数r=0.999 8。方法检出限为0.010 mg/L,加标回收率为93.3%~95.8%,测定结果的相对标准偏差为2.32%~3.48%(n=6)。该方法预处理简单,检测灵敏度高,可用于水体中环己酮含量的测定。  相似文献   

17.
建立固相萃取柱富集–气相色谱法测定地表水中氯丁二烯的方法。采用C18固相萃取小柱对水样进行富集处理,以二氯甲烷作为洗脱液,用带ECD检测器的气相色谱仪测定地表水中氯丁二烯的含量。氯丁二烯的质量浓度在1.0~30.0μg/L范围内与色谱峰面积成良好的线性关系,线性相关系数为0.999 2,方法检出限为0.08μg/L,测定结果的相对标偏差小于2%(n=7),加标回收率为92.3%~97.0%。该方法操作简便、快速,有机试剂用量少,适用于地表水中的氯丁二烯的测定。  相似文献   

18.
建立高效液相色谱法同时测定地表水中雌二醇、炔雌醇、雌酮、尼尔雌醇、苯甲酸雌二醇5种雌激素的残留量。水样经固相萃取柱富集,甲醇洗脱,以高效液相色谱法定量分析,5种雌激素分离良好。5种雌激素的质量浓度在0.08~4.00μg/m L范围内与色谱峰面积线性相关,相关系数均大于0.999;测定结果的相对标准偏差均小于5%(n=6);检出限分别为雌二醇0.04μg/m L,炔雌醇0.06μg/m L,雌酮0.03μg/m L,尼尔雌醇0.04μg/m L,苯甲酸雌二醇0.06μg/m L;加标回收率在87.6%~104.5%之间。该方法简单、灵敏、准确,可用于检测地表水中5种雌激素的残留量。  相似文献   

19.
采用分散固相萃取和分散液液微萃取方法,建立了气相色谱法快速检测甘蓝中氟氯氰菊酯、氯氰菊酯、溴氰菊酯及氰戊菊酯4种拟除虫菊酯农药残留量的分析方法。使用乙腈作为萃取溶剂,经乙二胺-N-丙基硅烷固相萃取吸附剂净化提取液,分散液液微萃取将农药富集到50μL二甲苯中后,采用气相色谱-电子捕获检测器进行分析。考察了萃取溶剂的种类与体积、分散剂体积及盐效应等因素对分散液液微萃取萃取效率的影响。结果表明:除氟氯氰菊酯在0.01~0.1 mg/L范围外,其余3种拟除虫菊酯农药均在0.01~5.0mg/L范围内线性关系良好,相关系数为0.997 9~0.999 2;加标浓度为0.02~0.5μg/g时,除氟氯氰菊酯外其他拟除虫菊酯农药的平均回收率为81.9%~93.5%,相对标准偏差为9.5%~20.7%。该方法简单、高效、重现性好、富集倍数高,可用于甘蓝中拟除虫菊酯类农药的快速检测。  相似文献   

20.
建立固相萃取–气相色谱–质谱联用法测定地表水中三氯苯的方法,对固相萃取柱、洗脱剂、甲醇用量进行优化试验。在200 m L水样中加入20 m L甲醇,采用C18固相萃取柱,以正己烷为洗脱溶剂萃取水中的三氯苯,用气相色谱–质谱法测定。结果表明,三氯苯的三种同分异构体分离良好,1,2,3-三氯苯、1,2,4-三氯苯、1,3,5-三氯苯的质量浓度在2.0~100μg/L范围内与其色谱峰面积均呈良好的线性,线性相关系数分别为0.999 1,0.999 4,0.999 2,检出限分别为0.004,0.005,0.005μg/L,加标回收率为90.3%~96.5%,测定结果的相对标准偏差均小于2%(n=7)。该方法操作简便、快速,定性定量准确,有机试剂用量少,适用于地表水中三氯苯的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号