首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
建立了利用辉光放电质谱法(GDMS)对高纯铝样品进行定量分析的方法。讨论了仪器工作参数、预溅射时间和质谱干扰的影响。采用高纯铝标样得出相对灵敏度因子(RSF)对实验结果进行校正,同时利用另一高纯铝标样HP1000验证实验的准确性,测定值与标准值的相对误差在-53.2%~16.6%之间,RSD在1.9%~11%之间,能够满足高纯铝中杂质的定量分析要求。  相似文献   

2.
建立了直流辉光放电质谱法(DC-GDMS)测定核级石墨粉中痕量杂质元素的方法。用一定的压力将石墨粉镶嵌在高纯铟片上,形成一个直径约为5 mm的圆形石墨薄层,用铟片辅助石墨粉放电,实现了粉状样品直接检测。优化的实验条件为放电电流0.8 mA,放电电压1.2 kV,放电气体流速0.437 mL/min。用石墨粉标准样品(19J T61029)单点校准了仪器相对灵敏度因子,消除基体效应,实现15个关键杂质元素定量分析。方法检出限为5.0 ng/g,在单侧0.05显著性水平下,利用Student's t检验,方法测定结果t值均小于临界值,与标准值无显著性差异。相对标准偏差(RSD)均小于10%。本方法与电感耦合等离子体光谱法测定结果比较,相对误差在2.4%~17.4%之间。  相似文献   

3.
辉光放电质谱(GDMS)作为高纯金属和半导体材料分析的强有力工具在国内已得到了大量应用,该文简要介绍了GDMS的基本原理和国内外应用现状,对仪器测量条件的选择、测量重复性进行了详细研究,对于含量在1 mg/kg左右的杂质,测量的重复性将产生约1%~5%的不确定度;对不同金属基体的系列标准物质进行对比研究,发现对于基体相同的样品,杂质元素在较宽的浓度范围内可以使用同样的校正系数进行校正,大部分元素的线性相关系数达到0.999以上,但对于不同基体的样品,测量中仍存在明显的基体效应,一些元素,尤其是轻质量数元素的相对灵敏度因子(RSF)设定值存在较大的偏差,并不适合定量分析,但绝大部分不超过2倍误差,可以满足半定量分析的要求。通过对GDMS定量分析中关键因素的研究,认为相对灵敏度因子的校正是GDMS测量结果可溯源性的关键。  相似文献   

4.
研究了辉光放电质谱仪(GDMS)的校准方法,评定了校准结果不确定度。用纯铜和合金钢标准样品在优化条件下对辉光放电质谱仪的灵敏度、稳定性、分辨率、检出限、示值误差和重复性等计量指标进行校准,验证仪器的可靠性。运用标准曲线方法定量分析合金钢标准样品中铜、钼、钨3钟元素,计算得铜、钼、钨3钟元素测量值的相对扩展不确定度分别为8%、6%、9%。根据不确定度来源和各不确定度分量结果,可知相对灵敏度因子(F)带来的不确定度显著高于其它不确定度,其对GDMS定量分析的准确性产生较大影响。  相似文献   

5.
采用标准溶液加入法,往高纯氧化铋中加入混合标液,烘干并研磨均匀,制备了5个高纯氧化铋的控制样品。在挑取适量的粉末样品压在高纯铟薄片上,建立了辉光放电质谱法(GDMS)研究高纯氧化铋中的Mg、Al、Ca等19个元素相对灵敏度因子的方法。实验考察了放电参数和制样面积对基体信号强度和稳定性的影响,优化后的辉光放电电流为1.8 mA,放电电压为950 V,压在铟薄片上的高纯氧化铋直径约为6~8 mm。通过选择合适的同位素,在4000的中分辨率下测定即可消除质谱干扰。为了验证加标的准确性,采用电感耦合等离子体质谱仪(ICP-MS)对控制样品进行测定,所有元素的回收率都在80%以上。采用GDMS法测定5个控制样品并结合ICP-MS的测定值建立工作曲线,大部分元素的线性均达到0.995以上;除Al、Ga、Sb外,大部分元素的校准相对灵敏度因子(calRSF)和仪器自带的标准相对灵敏度因子(stdRSF)的比值都在1/2~2之间,说明GDMS的半定量分析不会有数量级的差别。但对于某些需要准确测定纯度的定量分析,则必须采用基体相匹配的RSF值进行校正。  相似文献   

6.
建立了直流辉光放电质谱(dc-GDMS)测定三氧化钼中痕量元素含量的方法,优化了辉光放电参数,考察了三氧化钼制样面积对放电稳定性和灵敏度的影响。在优化条件下,测定2个三氧化钼标准样品BS ZZ42001和BS ZZ42003的相对灵敏度因子RSF1和RSF2,计算得到平均相对灵敏度因子RSFA,对三氧化钼标准样品BS ZZ42002的测定结果进行校正,与BS ZZ42002的标准值比较,除Ti和Cd外,校正后得到的各元素测定值相对误差在±9.5%以内。对未知的三氧化钼样品测定结果进行校正,并与电感耦合等离子体原子发射光谱法(ICP-AES)和电感耦合等离子体质谱法(ICP-MS)结果对比。t检验结果表明,RSFA校正值与ICP-AES/ICP-MS法测定值无显著性差异。该方法可为三氧化钼中多种痕量元素的快速定量分析提供参考。  相似文献   

7.
采用辉光放电质谱法(GDMS)分析超高纯铝样品(含铝量≥99.9995%)中B,Mg,Si,P,Cl,Ti等44种主要杂质元素,并且与电感耦合等离子体质谱法(ICPM S)进行对比,主要杂质元素含量检测结果一致。本工作对质谱干扰的排除和预溅射过程时间的确定进行了讨论,采用高纯铝标样对高纯铝中26种主要元素相对灵敏度因子(RSF)进行校正和验证,并考察了检测结果的准确性和精密度。结果表明,GDMS是超高纯铝样品直接测定的最有效手段之一。  相似文献   

8.
采用辉光放电质谱法(GDMS)分析超高纯铝样品(含铝量≥99.9995%)中B,Mg,Si,P,Cl,Ti等44种主要杂质元素,并且与电感耦合等离子体质谱法(ICPM S)进行对比,主要杂质元素含量检测结果一致。本工作对质谱干扰的排除和预溅射过程时间的确定进行了讨论,采用高纯铝标样对高纯铝中26种主要元素相对灵敏度因子(RSF)进行校正和验证,并考察了检测结果的准确性和精密度。结果表明,GDMS是超高纯铝样品直接测定的最有效手段之一。  相似文献   

9.
采用辉光放电质谱法测定单晶硅中替位碳含量,通过优化仪器工作条件,得到最佳放电参数。利用低温傅里叶变换红外光谱法对呈梯度的四个单晶硅片中替位碳含量进行赋值,将辉光放电质谱法测得替位碳强度与硅的离子束比与赋值结果作工作曲线,计算得到相对灵敏度因子(RSF_(cal))为1.19。在优化过的工作条件下,用辉光放电质谱法测未知样,用RSF_(cal)进行计算,得到单晶硅中替位碳的定量分析结果,与二次离子质谱(SIMS)法测定结果进行对照,相对误差为3.7%,一致性较好。  相似文献   

10.
采用标准溶液加入法往高纯氧化铋中加入混合标准溶液,烘干并研磨均匀,制备了5个高纯氧化铋的控制样品。再挑取适量的粉末样品压在高纯铟薄片上,建立了辉光放电质谱(GDMS)法校正高纯氧化铋中的Mg、Al、Ca等19种元素相对灵敏度因子的方法。实验考察了放电参数和制样面积对基体信号强度和稳定性的影响,优化后的辉光放电电流为1.8mA,放电电压为950V,压在铟薄片上的高纯氧化铋直径约为6~8mm。通过选择合适的同位素,在4000的中分辨率下测定即可消除质谱干扰。为了验证加标回收的准确性,采用电感耦合等离子体质谱(ICP-MS)法对控制样品进行测定,所有元素的加标回收率都在80%以上。采用GDMS法测定5个控制样品并结合ICP-MS法的测定值建立工作曲线,大部分元素的线性均达到0.995以上;除Al、Ga、Sb外,大部分元素的校准相对灵敏度因子(calRSF)和仪器自带的标准相对灵敏度因子(stdRSF)的比值都在1/2~2之间,说明GDMS的半定量分析不会有数量级的差别。但对于某些需要准确测定纯度的定量分析,则必须采用基体相匹配的RSF值进行校正。  相似文献   

11.
准确测定并控制材料中杂质元素含量是发挥高纯材料性能不可或缺的环节。辉光放电质谱法(GDMS)是准确、快速、高灵敏分析高纯材料中痕量及超痕量硫的理想方法。对GDMS分析高纯铜和镍基高温合金中痕量硫的质谱干扰进行了讨论,优化了放电电流和放电电压,采用多种标准物质对硫的相对灵敏度因子(RSF)进行了校准和验证,并与二次离子质谱法(SIMS)进行分析结果比对,验证了GDMS定量分析结果的准确性和可靠性。  相似文献   

12.
采用直流辉光放电质谱(dc-GD-MS)测定多晶硅中关键杂质元素的相对灵敏度因子(RSF).标样制作过程中主要是在连续通入氩气条件下将固定量的非标准多晶硅样品熔化,向硅熔体中均匀掺入浓度范围为1~30 μg/g的关键杂质元素(如B和P),采用快速固化法制成标样;再将制成的标准样品加工成一系列适合GD-MS扁平池(Flat Cell)的片状样品(20 mm×20 mm×2mm).采用二次离子质谱法(SI-MS)对标准样品中关键掺杂元素进行多次定量测定,取平均值作为关键杂质元素的精确含量.优化一系列质谱条件后,运用GD-MS对标样中关键掺杂元素的离子强度进行多次测定,计算平均结果,得到未校正的表观浓度,利用标准曲线法计算出关键杂质元素的相对灵敏度因子.  相似文献   

13.
通过选择合适的同位素及分辨率,提出了辉光放电质谱法(GDMS)测定超高纯铜溅射靶材中39种痕量杂质元素的分析方法。对辉光放电过程中的参数进行了优化,条件如下:放电气体流量为450 mL·min^(-1),放电电流为2.00 mA,预溅射时间为20 min。由于高纯铜的GDMS标准样品极难获得,为提高痕量杂质元素的检测准确度,在现有的标准样品条件下,利用高纯铜标准样品只获得了与基体匹配的21种杂质元素的相对灵敏度因子(RSF),其余18种杂质元素的RSF只能按照仪器自带的标准RSF进行计算。参照美国材料与试验协会的标准ASTM F1593-08(2016)的TypeⅢ中的第2种方法计算33种杂质元素的检出限,而其他6种主要杂质元素因其含量高于仪器噪声水平而无法用此法得到检出限。用GDMS对超高纯铜溅射靶材样品进行了检测,主要杂质元素为硅、磷、硫、氯、铁、银,检出量为0.015~0.082μg·g^(-1),杂质总量小于1μg·g^(-1)。除锌、碲、金的检出限在10 ng·g^(-1)级外,其余元素的检出限能够达到ng·g^(-1)级,其中钍、铀的检出限甚至达到了0.1 ng·g^(-1)级,说明方法能够满足GB/T 26017-2010中的6N(99.9999%)超高纯铜溅射靶材的检测要求。  相似文献   

14.
采用辉光放电质谱法(GDMS)测定了纯锡中24种杂质元素,分析方法为无标定量分析。分析前纯锡样品须依次用乙醇、水及乙醇冲洗以除去表面的灰尘颗粒,凉干后用于分析。本工作对辉光放电过程中的三项关键因素,即辉光放电电压、放电电流及放电气流三者在辉光放电溅射/电离时的相互关系及其对总离子流强度的影响进行了试验和讨论,并确定了仪器在最佳状态时辉光放电的优化条件为:放电电压590V,放电电流30mA,放电气流450mL·min~(-1)。为排除各元素测定中质谱(MS)干扰的影响,选择了在不同的分辨模式(中/高)下用相对丰度较高、干扰较少的质量数进行分析。所测定元素测定结果的相对标准偏差(n=5)均小于15%。各元素的检出限(3s)为0.003~0.174μg·g~(-1)之间。本方法所得测定结果与电感耦合等离子体原子发射光谱法(ICP-AES)或电感耦合等离子体质谱法(ICP-MS)的测定结果基本一致。经试验,通过更换GDMS的阳极帽、导流管、采样锥和透镜等4种耗材,可完全消除锡的记忆效应。  相似文献   

15.
采用辉光放电质谱法(GD-MS)测定太阳能级多晶硅中B,P,Fe,Co,Ni,Cu,Zn等痕量杂质元素,并优化和选择了GD-MS工作参数。考察了在半定量分析的情况下,GD-MS测定痕量杂质的精密度。结果表明,GD-MS对B,P,Na,Al,K,Ca,Fe,Ni,Cu,Co,Zn等元素测定结果的RSD都小于30%。用ICP-MS法进行验证,检出限0.14~2.85 ng/mL,RSD为1.6%~12%,加标回收率85.2%~125%。  相似文献   

16.
利用高纯铜粉与稀土矿石粉末均匀混合压片制样.混合15种高纯稀土氧化物制样建立标准工作曲线,校正15种稀土元素相对灵敏度因子,再进行定量分析.结果 表明,稀土元素工作曲线的线性方程相关系数R2均大于0.996,相对标准偏差(RSD)小于5%,满足定量分析要求.测定结果与电感耦合等离子体质谱法(ICP-MS)和电感耦合等离...  相似文献   

17.
取高纯GeO_2粉末5.00g(颗粒度小于30μm)5份,其中一份作为空白,其余4份中依次加入Li、Be、Mg、Al、Ti、V、Cr、Fe、Ni、Co、Cu、Zn、Sn、Sb、Tl、Pb等16种元素的标准溶液,使其浓度梯度为0,0.4,1.0,2.0,5.0μg·g~(-1),于烘箱中100℃烘干。充分研磨混匀后制得GeO_2粉末中含16种杂质元素的控制样品。取高纯铟按方法规定压制成直径约为15mm的In薄片。取5片铟薄片,取适量上述5个GeO_2控制样品分别置于铟薄片上,盖上数层称量纸后用手动压紧压实,使铟薄片上的控制样品的直径约为4mm,并分别进行直流辉光放电质谱法(dc-GD-MS)测定。选择放电电流为1.8mA,放电电压为850V,采用电感耦合等离子体质谱法(ICP-MS)测定控制样品中各杂质元素的含量,并将这些测定值作为标准值。将ICP-MS测定所得待测元素和基体元素的离子束强度比值为横坐标,以与其对应的信号强度为纵坐标绘制校准曲线,曲线的斜率即为各元素的相对灵敏度因子(RSF)值。所得16种元素的校准RSF(calRSF)值和仪器自带的标准RSF(stdRSF)值之间存在显著的差异,其比值大都在2~3之间。由此可见制备的一组GeO_2粉末控制样品不仅建立了各元素的工作曲线,而且获得了与基体相匹配的RSF值,解决了用GD-MS测定高纯GeO_2中16种杂质元素的问题。  相似文献   

18.
采用辉光放电质谱法(GD-MS)测定高纯钛中Mg、Al、Cr、Fe、V、Mn、Co、Ni、Cu、Zn、As、Sn、Sb、Ta、W、Pb、Bi等痕量杂质元素,并对GD-MS工作参数及条件进行了优化。主要元素与内标校正ICP-MS法定量分析的结果一致,对结果差异的原因进行分析,论述了Element GD辉光放电质谱仪在痕量杂质元素分析方面的优势。  相似文献   

19.
采用辉光放电质谱法(GD-MS)对高纯铌中Ta,Mo,W等痕量杂质元素进行了测试,并对GD-MS工作参数进行了优化,部分元素与采用电感耦合等离子体质谱法(ICP-MS)定量分析的结果进行比较,对某些元素含量差别较大的原因进行了分析,论述了Element GD辉光放电质谱仪的特点及其在痕量杂质分析上的优势。  相似文献   

20.
通过选择合适的同位素及分辨率,建立了辉光放电质谱法(GDMS)测定高纯Ti中57种痕量杂质元素的方法。辉光放电过程优化条件为Ar流量500 mL/min,放电电流2.2 mA,预溅射时间30 min。利用高纯Ti标准样品获得了与基体匹配的13种元素的相对灵敏度因子(RSF)值。用建立的方法对高纯Ti溅射靶材样品进行检测,主要杂质元素为Al, Si, S, Cl, V, Cr, Mn, Fe, Ni, Cu, Zr,含量在0.051~2.470μg/g之间,相对标准偏差(RSD)<23%,杂质总量<5μg/g。其中,Ca, Nb元素的检出限为0.5μg/g,其余元素的检出限低至10 ng/g级或1 ng/g级,而且Th, U元素的检出限达到0.1 ng/g。该方法能够满足5N级高纯金属Ti溅射靶材的检测要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号