首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two mesoporous ordered carbon materials (MOCs) have been synthesized from silica templates by using sucrose as the carbon precursor. The textural characterization using Ar, N2, and CO2 adsorption combined with neutron diffraction showed that the two samples exhibit a significant microporous volume close to 0.5 cm3/g and an ordered network of mesopores. For both MCM48 and SBA15 templated carbons, adsorption first proceeds with the filling of micropores and then by the filling of mesopores with an adsorption energy close to the enthalpy of vaporization of bulk hydrogen. The hydrogen isosteric heat of adsorption in the micropores (6-8 kJ/mol) is significantly larger than that on the graphite surface (approximately 4 kJ/mol) but still too small for a reasonable use of these MOCs as hydrogen adsorbents for storage at room temperature. The neutron scattering study showed that the structure at 10 K of the adsorbed deuterium phase is poorly organized; it exhibits short and medium range orders of about 13 angstroms in micropores and about 20 angstroms in mesopores, respectively. The average distance between adsorbed molecules decreases with coverage by about 10%. In the mesopores, the diffracted line is consistent with a pseudohexagonal packing.  相似文献   

2.
We report experimental results on the structure and melting behavior of ice confined in multi-walled carbon nanotubes and ordered mesoporous carbon CMK-3, which is the carbon replica of a SBA-15 silica template. The silica template has cylindrical mesopores with micropores connecting the walls of neighboring mesopores. The structure of the carbon replica material CMK-3 consists of carbon rods connected by smaller side-branches, with quasi-cylindrical mesopores of average pore size 4.9 nm and micropores of 0.6 nm. Neutron diffraction and differential scanning calorimetry have been used to determine the structure of the confined ice and the solid-liquid transition temperature. The results are compared with the behavior of water in multi-walled carbon nanotubes of inner diameters of 2.4 nm and 4 nm studied by the same methods. For D(2)O in CMK-3 we find evidence of the existence of nanocrystals of cubic ice and ice IX; the diffraction results also suggest the presence of ice VIII, although this is less conclusive. We find evidence of cubic ice in the case of the carbon nanotubes. For bulk water these crystal forms only occur at temperatures below 170 K in the case of cubic ice, and at pressures of hundreds or thousands of MPa in the case of ice VIII and IX. These phases appear to be stabilized by the confinement.  相似文献   

3.
Highly porous carbons have been prepared by the chemical activation of two mesoporous carbons obtained by using hexagonal- (SBA-15) and cubic (KIT-6)-ordered mesostructured silica as hard templates. These materials were investigated as sorbents for CO(2) capture. The activation process was carried out with KOH at different temperatures in the 600-800°C range. Textural characterization of these activated carbons shows that they have a dual porosity made up of mesopores derived from the templated carbons and micropores generated during the chemical activation step. As a result of the activation process, there is an increase in the surface area and pore volume from 1020 m(2)g(-1) and 0.91 cm(3)g(-1) for the CMK-8 carbon to a maximum of 2660 m(2)g(-1) and 1.38 cm(3)g(-1) for a sample activated at 800°C (KOH/CMK-8 mass ratio of 4). Irrespective of the type of templated carbon used as precursor or the operational conditions used for the synthesis, the activated samples exhibit similar CO(2) uptake capacities, of around 3.2 mmol CO(2)g(-1) at 25°C. The CO(2) capture capacity seems to depend on the presence of narrow micropores (<1 nm) rather than on the surface area or pore volume of activated carbons. Furthermore, it was found that these porous carbons exhibit a high CO(2) adsorption rate, a good selectivity for CO(2)-N(2) separation and they can be easily regenerated.  相似文献   

4.
Russian Journal of Applied Chemistry - Mesostructured silicates MCM-48, SBA-15, and MCM-41 were synthesized, and the corresponding ordered mesoporous carbons CMK-1, CMK-3, and CS41 were prepared on...  相似文献   

5.
Highly ordered mesoporous carbon functionalized with carboxylate groups and magnetic nanoparticles has been successfully synthesized. By oxidative treatment using (NH(4))(2)S(2)O(8) and H(2)SO(4) mixed solution, numerous hydrophilic groups were created in the mesopores without destroying the ordered mesostructure of CMK-3. Through the in situ reduction in Fe(3+), magnetic nanoparticles were successfully introduced into the mesopores, resulting in the multifunctional mesoporous carbon Fe-CMK-3. The obtained hybrid carbon material possesses ordered mesostructure, high Brunauer-Emmett-Teller (BET) surface area up to 1013 m(2)/g, large pore volume of about 1.16 cm(3)/g, carboxylic surface, and excellent magnetic property. When used as an adsorbent, Fe-CMK-3 exhibits excellent performances for removing toxic organic compounds from waster-water, with a high adsorption capacity, an extremely rapid adsorption rate, and an easy magnetically separable process. In the case of requiring emergency removal of large amount of organic pollutants in aqueous, the hybrid carbon adsorbent would be an ideal choice.  相似文献   

6.
Activated ordered mesoporous carbons with a channel structure (AOMCs-CS) were successfully prepared by imposing CO(2) activation on ordered mesopore carbon C-FDU-15. It is found that the continuous carbon framework of the precursor C-FDU-15 plays an important role in keeping the order structure of the resulting AOMCs-CS. The mild activation (e.g., 31 wt % burnoff) does not impair the order degree. After that, the order degree gradually decreases with further increasing burnoff. However, the basic hexagonal mesostructure of C-FDU-15 can still be found in the AOMCs-CS when the burnoff is up to 73 wt %, although many carbon walls are punched and thus many larger mesopores and marcropores are generated. With increasing burnoff, the surface area and volume of micropores increase first and then decrease, and the surface area and volume of mesopores continuously increase. The highest measured Brunaruer-Emmett-Teller (BET) surface area, micropore volume, and total pore volume of the AOMCs-CS reach 2004 m(2)/g, 0.50 cm(3)/g, and 1.22 cm(3)/g, respectively.  相似文献   

7.
We present an in situ reduction method to synthesize a novel structured MnO(2)/mesoporous carbon (MnC) composite. MnO(2) nanoparticles have been synthesized and embedded into the mesoporous carbon wall of CMK-3 materials by the redox reaction between permanganate ions and carbons. Thermogravimetric analysis (TG), X-ray photoelectron spectrum (XPS), X-ray diffraction (XRD), nitrogen sorption, transmission electron microscopy (TEM), and cyclic voltammetry were employed to characterize these composite materials. The results show that different MnO(2) contents could be introduced into the pores of CMK-3 treated with different concentrations of potassium permanganate aqueous solution, while retaining the ordered mesostructure and larger surface area. Increasing the MnO(2) content did not result in a decrease in pore size from the data of nitrogen sorption isotherms, indicating that MnO(2) nanoparticles are embedded in the pore wall, as evidenced by TEM observation. We obtained a large specific capacitance over 200 F/g for the MnC composite and 600 F/g for the MnO(2), and these materials have high electrochemical stability and high reversibility.  相似文献   

8.
New ordered mesoporous carbons containing nickel oxide nanoparticles have been successfully synthesized by carbonization of sucrose in the presence of nickel acetate inside SBA-15 mesoporous silica template. The obtained samples were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, and transmission electron microscopy (TEM). The NiO nanoparticles were embedded inside the mesoporous carbon framework due to the simultaneous pyrolysis of nickel acetate during carbonization. The electrochemical testing of the as-made nanocomposites showed a large specific capacitance of 230 F g−1 using 2 M KOH as the electrolyte at room temperature. This is attributed to the nanometer-sized NiO formed inside mesoporous carbons and the high surface area of the mesopores in which the NiO nanoparticles are formed. Furthermore, the synthetic process is proposed as a simple and general method for the preparation of new functionalized mesoporous carbon materials, for various applications in catalysis, sensor or advanced electrode material.  相似文献   

9.
有序介孔炭的合成及液相有机大分子吸附性能研究   总被引:3,自引:0,他引:3  
分别采用有序介孔氧化硅SBA-15和NaY分子筛为硬模板合成了系列有序介孔炭OMC和微孔炭CFY. N2静态吸附测试表明, 所合成的介孔炭具有丰富的介孔结构和集中的介孔分布. 以亚甲基蓝为探针分子, 研究其在有序介孔炭OMC和微孔炭CFY上的吸附行为. 研究结果表明, 有序介孔炭中大于3.5 nm的大介孔孔容是决定亚甲基蓝吸附容量和吸附速率的关键因素. 吸附动力学理论研究表明, 准二级动力学方程可以很好地描述亚甲基蓝分子在介孔炭上吸附动力学行为.  相似文献   

10.
A series of soft-templated ordered mesoporous carbons (OMCs) was synthesized by using resorcinol and formaldehyde as carbon precursors, triblock copolymer Pluronic F127 as a soft-template, and an organic acid (acetic, benzoic, citric, oxalic, or succinic) as a polymerization reaction catalyst. The aforementioned organic acids were strong enough to facilitate the formation of ordered mesophases by the block copolymer template used and to catalyze the polymerization reaction of resorcinol and formaldehyde in this template. The use of weak organic acids instead of strong inorganic acids such as HCl eliminated inorganic anions from the reaction environment and resulted in high surface area OMCs. Basically, the resulting carbons showed the surface areas and pore volumes comparable to those reported for the carbons prepared under similar conditions but in the presence of strong inorganic acids. Electron microscopy analysis proved the presence of ordered mesopores, whereas thermogravimetric analysis showed a good thermal stability of these carbons.  相似文献   

11.
An ordered mesoporous carbon, CMK-3, was synthesized using a mesoporous siliceous material, SBA-15, as the template. CMK-3 was characterized and used for the adsorption of fullerenes C60 and C70. It was found that the adsorption capacity of CMK-3 is 4 times higher than that of activated carbon. The adsorption equilibrium isotherms of C60 and C70 on CMK-3 were studied for both single and binary systems. The reversibility of fullerene adsorption on CMK-3 was also explored. The results showed that CMK-3 is an effective and reversible adsorbent for the separation of fullerenes by adsorption.  相似文献   

12.
不同孔径的介孔碳分子筛对VB12的吸附性质研究   总被引:5,自引:1,他引:5  
摘要利用SBA-15为模板, 在不同温度下合成了孔径大小在3.7(CMK-3-100)和6-3 nm(CMK-3-150)之间的介孔碳, 以其作为吸附剂, 研究了它们在水溶液中对VB12的吸附作用. 结果表明, CMK-3-130与CMK-3-100和CMK-3-150相比, 表现出对VB12最大的吸附能力(吸附能力为412.5 mg/g), 这是因为它有比较高的有序结构和比较大的孔容.  相似文献   

13.
We have carried out a comparative study of matrix carbonization of some organic precursors (sucrose, polydivinylbenzene, polyphenol-formaldehyde, polyacrylonitrile, acetonitrile) in SBA-15 and KIT-6 silica mesoporous molecular sieves. We have shown that carbon mesoporous molecular sieves of the CMK-8 type, obtained in KIT-6 mesopores, have better adsorption characteristics due to the features of the three-dimensional cubic structure, the larger pore volume and thickness of the walls of the framework. The maximum micropore volume is observed in CMK-3 and CMK-8, obtained by carbonization of polyphenol-formaldehyde and polydivinylbenzene, while the greatest specific surface area is observed on carbonization of sucrose, where the maximum hydrogen adsorption capacity is achieved at a level of ∼1.4 wt.% (77 K, 1 atm). We show that the mesopore surface coverage by hydrogen in carbon mesoporous molecular sieves increases as the degree of graphitization increases.  相似文献   

14.
Anatase TiO2 photocatalysts supported with the ordered mesoporous carbon, CMK-3, were synthesized by the incorporation of TiO2 into CMK-3 followed by heating at 700 °C. The structural properties of the TiO2 on CMK-3 were investigated by X-ray diffraction, nitrogen physisorption and electron microscopy techniques. In particular, TiO2 was observed both inside and the external surface of CMK-3. The photocatalytic activity of TiO2 on CMK-3 under UV-light exhibited higher efficiency in removing the Rhodamine 6G dye solution than the commercial photocatalyst P25 and TiO2 on activated carbon. It was attributed to the synergistic effect of large surface area adsorption provided by mesoporous CMK-3 and the distinctive location of TiO2 on the external surface of CMK-3.  相似文献   

15.
A facile synthesis of micro- and mesoporous carbons has been proposed using colloidal silica nanoparticles with diameter of ∼24 nm and poly(vinylidene chloride-co-vinyl chloride) (Saran) as a carbon precursor. The resulting carbons possessed large specific surface area, ∼800 m2/g, and approximately the same volume of micro- and mesopores, each about 50% of the total pore volume. While the size of micropores was around 1 nm, the large and uniform spherical mesopores (about 24 nm) resemble the diameters of silica colloids used. Nitrogen adsorption measurements proved that these mesopores were interconnected and accessible. The well-developed microporosity was created mainly by decomposition of Saran copolymer during carbonization.  相似文献   

16.
以SBA-15为模板,二茂铁为碳源,利用化学气相沉积(CVD)法合成了Fe/CMK-5复合材料.用粉末X射线衍射、低温N2吸附、热重分析、透射电镜等对复合材料进行了表征.结果表明复合材料中碳以CMK-5结构存在,Fe颗粒均匀地分布在CMK-5的骨架中,通过调节CVD时间可改变Fe/CMK-5的结构参数.在pH值为11的缓冲溶液中研究了Fe/CMK-5系列复合材料对溶菌素(lysozyme)的吸附性能,考察了溶菌素在Fe/CMK-5孔道内部的结构稳定性以及在不同pH值溶液中的泄露量.  相似文献   

17.
Liang Cao  Michal Kruk 《Adsorption》2010,16(4-5):465-472
A variety of ordered mesoporous carbons (OMCs) were synthesized using ordered mesoporous silicas (OMSs) as hard templates and the mesophase pitch (MP) as a carbon precursor. The synthesis included the mixing of OMS with MP, the infiltration of OMS with MP at 450–550?°C and the carbonization of MP in OMS/MP composite followed by the dissolution of the OMS template. OMCs with structures of two-dimensional hexagonal arrays of nanorods and three-dimensional arrays of nanospheres were obtained through the replication of silica templates, including large-pore SBA-15, KIT-6, large-pore FDU-12 and SBA-16. In particular, 2-D hexagonal array of carbon nanorods (CMK-3 carbon) with (100) interplanar spacing of ~13 nm as well as an array of carbon nanospheres arranged in the face-centered cubic structure with the unit-cell parameter of 33 nm were successfully prepared. The specific surface areas of the resulting carbons were up to 400 m2/g, and the total pore volumes were up to 0.43 cm3/g, with the highest values achieved when the MP infiltration temperature was 500?°C. The OMCs exhibited narrow mesopore size distributions. As inferred from XRD, the frameworks of OMCs featured semi-graphitic structures even though moderate carbonization temperature (850?°C) was employed.  相似文献   

18.
Nanocast silica (NCS-1) was synthesized by a casting process by employing the mesoporous carbon CMK-3 (the replica of SBA-15) as a template, tetraethoxysilane (TEOS) as the silica source, and hydrochloric acid (HCl) as the catalyst. The ordered carbon template was removed by employing different methods, such as calcination, thermal treatment followed by calcination, and controlled combustion. According to XRD and TEM characterization, NCS-1 exhibits an ordered structure with hexagonal symmetry and retains the morphology of the original SBA-15 used for the synthesis of CMK-3 over two replication steps on the nanometer scale. This demonstrates the well-connected porosity in CMK-3 type carbon, which can be used as a mold to synthesize mesostructured materials. The nitrogen adsorption isotherms generally show type IV shape, indicating mesoporous characteristics. The structure of NCS-1 is strongly influenced by variables of the nanocasting process, such as the loading amount of silica, hydrolysis temperature, and carbon removal methods. The surface area, pore size, and pore volume of NCS-1 can be tuned to a certain range by varying these parameters.  相似文献   

19.
Highly ordered mesoporous silica can be regenerated from a mesoporous carbon CMK-3 that is a negative replica of mesoporous silica SBA-15, indicating reversible replication between carbon and inorganic materials.  相似文献   

20.
方林  张坤  陈露  吴鹏 《催化学报》2013,34(5):932-941
采用浸渍法将糠醇负载在铝改性的SBA-15介孔孔道中,经550℃不完全碳化制备了结构规整、含多苯环的中空管状硅碳复合介孔材料.结果表明,通过温和磺酸化作用可使磺酸基团成功取代在多苯环上,其酸量随着多苯环涂层厚度变化在0.38~0.84 mmol/g范围内可控调变.相比于蔗糖作为糖源的复合固体酸,所制碳多苯环-硅酸催化剂具有中空碳纳米管堆积的类似CMK-5介孔结构,以及较大的反应空间、稳定的机械性能、较高的比表面和大量可以接触的质子酸中心,因而在大分子缩醛(酮)反应中表现了良好的催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号