首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
TiO_2因其毒性低、稳定性高、制备成本低廉而获得广泛应用,特别是作为光催化剂在降解环境污染物方面受到了广泛关注;然而,纯TiO_2较大的光生载流子复合率和较宽的带隙限制了其应用.元素掺杂作为一种拓宽光催化剂光吸收能力的方法广泛应用于各种光催化剂的修饰改性,而两种具有光催化性能的TiO_2相共存则能有效抑制光生载流子的复合,因此采取合适的方法有效利用这两种TiO_2改性的方法制备得到更具实际应用潜质的光催化剂具有一定的可行性.本文通过简单的溶胶-凝胶过程向锐钛矿相与金红石相组成的混相TiO_2中共掺杂碳和钇得到了一种活性较高的可见光响应光催化剂.采用粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电镜等表征手段研究了碳和钇掺杂对TiO_2结构的影响,发现碳掺杂有利于金红石相的形成且材料具有更大的晶粒尺寸,钇掺杂则有利于锐钛矿相的形成且能细化材料的晶粒尺寸,提高材料的比表面积,导致材料更好的光催化活性.材料在30 W荧光灯光照条件下的光催化降解亚甲基蓝(MB)性能的研究显示,C-Y-TiO_2样品具有比单掺杂和未掺杂样品更高的光催化活性,其顺序为C-Y-TiO_2Y-TiO_2C-TiO_2TiO_2≈P25.此外,降解反应动力学研究表明C-Y-TiO_2样品光降解MB的速率是未掺杂样品在相同条件下降解速率的3.5倍.不同钇掺杂含量样品的结构和光催化降解MB的研究结果表明,钇掺杂显著促进了锐钛矿相TiO_2的形成.这说明钇可能仅掺杂进入锐钛矿相,因此合适的钇掺杂量才能有效形成最优化的光催化性能的混相TiO_2.不同热处理温度下获得的样品的光降解MB特性也表明,一定的热处理温度有利于合适的锐钛矿相和金红石相的组成,从而有利于相间的协同效应.紫外-可见光谱和荧光光谱表征分析表明,碳和钇的掺杂都拓展了其吸收光谱到可见光区域,且抑制了光生电子和空穴对的复合,进而提高了材料的光催化活性.碳和钇共掺杂的混相TiO_2具有较高可见光光催化活性的主要原因有两个方面:一是元素掺杂减小了TiO_2的带隙使得材料具有可见光响应;二是金属和非金属元素在锐钛矿相与金红石相TiO_2中不同的掺杂特性形成的协同效应,抑制了光生电子和空穴的复合.  相似文献   

2.
光催化技术被认为是解决能源和环境问题的最有前途方法之一.较高光催化活性的石墨相氮化碳(g-C_3N_4)及碳掺杂TiO_2(C-TiO_2)的制备及性能一直是环境光催化研究的热点,然而,单一光催化剂存在光生电子空穴易复合及量子效率低等问题.本课题组曾通过简单的水辅助煅烧法成功制备了纳米多孔g-C_3N_4,结果发现,多孔g-C_3N_4光催化活性较体相的明显提高,但光催化效率仍不够理想,原因是光生电子空穴复合较严重.传统的制备C-TiO_2的方法亦存在一些不足,如需要添加碳源或碳组分聚集体.我们采用原位掺杂的方法合成了含有一定氧空位和活性位的纳米碳改性的C-TiO_2,后辅以简单的化学气相沉积法构建了g-C_3N_4表面修饰的g-C_3N_4@C-TiO_2.结果表明,相比纯g-C_3N_4, TiO_2及C-TiO_2,g-C_3N_4@C-TiO_2具有更高的光催化活性;但其原因及碳掺杂态的影响尚不清楚.基于此,本文采用X射线光电子能谱技术(XPS)、透射电子显微镜(TEM)、电化学阻抗谱(EIS)、光致发光谱(PL)、电子顺磁共振技术(EPR)及理论计算等手段研究了g-C_3N_4@C-TiO_2光催化活性提高的原因和机理.XPS结果表明,随着碳含量的增加,间隙掺杂产生的O-C键的峰值强度先增大后趋于稳定,而晶格取代掺杂产生的Ti-C键的峰值强度逐渐增大.Ti-O峰的减少进一步证明了更多的碳取代了氧晶格的位置.随着碳掺杂量的增加,C-TiO_2的带隙逐渐减小,因而吸收边红移;同时, g-C_3N_4@C-TiO_2的光催化降解效率先升高后降低. g-C_3N_4@C-TiO_2对RhB(苯酚)光降解的最大表观速率常数为0.036(0.039)min-1,分别是纯TiO_2, 10C-TiO_2, g-C_3N_4和g-C_3N_4@TiO_2的150(139), 6.4(6.8), 2.3(3)和1.7(2.1)倍.g-C_3N_4通过π-共轭和氢键与C-TiO_2表面紧密结合,在催化剂中引入了新的非局域杂质能级和表面态,可以更有效地分离和转移光生电子,因而光催化活性增加.由此可见,碳掺杂状态和g-C_3N_4原位沉积表面改性对g-C_3N_4@C-TiO_2复合光催化剂性能的影响很大.  相似文献   

3.
光催化可实现污染物降解、分解水制氢和CO_2还原等多种氧化还原反应,因而受到了广泛关注.光催化材料中光生电荷的数目与氧化还原能力直接影响光催化反应效率,在许多光催化反应中,光生空穴氧化反应被认为速控步骤.以光催化分解水为例,质子的还原是单电子过程,水氧化产生氧气则涉及四个电子.空穴的高能量不仅可赋予其高的氧化能力,还能提高其迁出表面的能力,因此具有重要研究价值.我们组的前期工作表明,以TiB_2作为前驱体,采用水热合成和焙烧两步法可制备出间隙硼掺杂的金红石相或锐钛矿相TiO_2,间隙硼掺杂可显著降低价带顶,提升光催化氧化水产氧性能.然而,在已有的结果中,间隙硼掺杂浓度在TiO_2中均呈现从内向外逐渐增加的梯度分布,这意味着硼掺杂浓度有限,且表层更低的价带顶不利于体相光生空穴向表面迁移,因此亟需实现TiO_2中均相的间隙硼掺杂.本文以湿化的氩气为水解环境,将水解过程限域在TiB_2的表面以减少硼原子流失;同时提高水解温度,使残留的硼原子形成间隙掺杂,避免其在二次焙烧时扩散,从而在TiB_2核的表面所形成的TiO_2壳层中实现均相间隙硼掺杂,显著提高了光催化氧化水产氧活性.多种表征结果表明,直径约为6–10μm的TiB_2核表面形成了厚约400 nm的TiO_2壳层,在TiO_2/TiB_2中TiO_2壳层重量比约为30%,TiO_2壳层中锐钛矿相TiO_2占比为65 wt%,金红石相TiO_2占比为35 wt%.TiO_2壳层中间隙硼为均相分布,硼掺杂显著降低了价带顶位置,提高了光生空穴的氧化能力,从而使得TiB_2/TiO_2展现出比未掺杂的金红石、锐钛矿相及两者混合相的TiO_2均具有更高的光催化氧化水产氧的能力.  相似文献   

4.
绿色光催化技术在可持续水处理和环境修复领域具有广阔的应用前景.光催化效率在很大程度上取决于光催化剂,其中二氧化钛(Ti O_2)因具有超强的光氧化能力、化学稳定性和低成本等优点而广泛应用于光催化降解水中各类有机污染物.然而,Ti O_2的光催化效率仍然受限于其自身比表面积小、太阳光利用率低以及光生载流子复合速率快等缺点.为了克服以上缺点,进一步提高Ti O_2的光催化效率,本研究采用简单易行的原位共缩合结合水热处理技术,以葡萄糖为碳源,四异丙氧基钛(TTIP)为钛源,成功制备了一系列由锐钛矿相Ti O_2与石墨相碳组成的Ti O_2/C复合光催化剂,它们在水中新兴酚类污染物的降解中表现出了优异的可见光光催化活性.通过X射线衍射、热重分析、X射线光电子能谱、孔隙率分析、扫描电镜、透射电镜、紫外-可见漫反射光谱等表征手段对催化剂的组成和结构、形貌、孔隙率性质及光吸收特性进行了表征.结果显示,Ti O_2/C复合光催化剂具有独特的微孔/介孔结构,以及比Ti O_2更大的比表面积(222-263 m~2 g~(-1))和更窄的带隙能(2.50-2.77 e V).通过水中新兴酚类污染物如乙酰氨基酚(APAP)和对羟基苯甲酸甲酯(MPB)的可见光光催化降解实验研究了Ti O_2/C的光催化性能.结果显示,Ti O_2/C复合光催化剂表现出优于纯Ti O_2和商用P25-Ti O_2的可见光光催化活性.其中,性能最佳的Ti O_2/C-10.3(碳掺杂量为10.3%)在可见光照射下20 min即可完全降解APAP,180 min可降解90%以上的MPB;Ti O_2/C-10.3光催化降解APAP和MPB的表观速率常数分别是纯Ti O_2的7.6和2.8倍,是商用P25-Ti O_2的6.2和2.6倍.Ti O_2/C复合光催化剂表现出良好的稳定性,能够在完成五次光催化循环实验后仍然保持其良好的光催化活性.通过光电化学实验、间接化学探针测试和电子自旋共振光谱分析并结合表征结果,揭示了Ti O_2/C可见光光催化活性提高的原因.首先,石墨相碳的掺入降低了材料的带隙能,拓宽了材料的可见光吸收范围,同时石墨相碳可作为电子阱促进光生电子从Ti O_2的价带转移到自身,从而有效抑制光生载流子的复合;其次,在复合催化剂中,锐钛矿相Ti O_2与石墨相碳密切接触有利于光生载流子的有效分离,也可起到抑制光生载流子复合的作用;最后,复合催化剂较大的比表面积和独特的微孔/介孔双孔结构为APAP和MPB降解反应提供了充足活性位点,同时入射光在孔道内多次反射又进一步提高了催化剂对光能的利用率.在Ti O_2/C光催化降解体系中检测到的主要活性物种有羟基自由基、光生空穴和超氧自由基,三者共同参与APAP和MPB的降解和矿化过程.通过对光催化降解中间产物的分析,分别提出了Ti O_2/C复合光催化剂可见光催化降解APAP和MPB的路径.本研究为设计高效降解水中有机污染物的碳掺杂Ti O_2光催化材料提供了新思路.  相似文献   

5.
制备了C/CaFe2O4纳米棒复合材料,并考察了其光催化性能,同时深入研究了C修饰对CaFe2O4活性的影响.研究发现,复合材料的光催化降解活性与C和CaFe2O4的质量比密切相关.其最佳的碳含量为58 wt%,所得复合光催化剂对亚甲基蓝(MB)的降解速率常数达到0.0058 min-1,是铁酸钙的4.8倍.进一步研究表明,C修饰在CaFe2O4表面显著提高了样品对亚甲基蓝染料的吸附性能.吸附等温线结果发现,MB以单分子层形式吸附于CaFe2O4表面.总体而言,C覆盖在CaFe2O4表面可以使光生电子和空穴更有效的分离和传输,可以显著提高催化剂对MB的吸附性能,还可以增强样品对光的吸收能力,因而催化剂光催化降解MB性能增加.表征结果表明,复合光催化剂表面含有大量羧基和羟基基团,导致光催化剂表面带负电荷,从而有利于阳离子的MB的静电吸附.为了进一步验证该吸附机理,我们选择了另外两种染料分子,阳离子的罗丹明B和阴离子的甲基橙.结果显示,该光催化剂对罗丹明B同样具有较强的吸附能力和较好的光催化降解活性,但对甲基橙几乎没有吸附和光催化性能.这充分说明亚甲基蓝染料通过静电相互作用的形式吸附于催化剂表面,较好的吸附性能进一步促进了光催化剂的降解活性.为了讨论光催化机理,向反应体系中加入不同的捕获剂来研究光催化反应过程中产生的活性物种.研究显示,羟基自由基在光催化降解亚甲基蓝的反应中几乎没有作用,光生空穴发挥了次要作用,而超氧自由基在整个反应中发挥了主导作用.因此,光催化降解的机理如下:CaFe2O4在可见光激发下产生光生电子和空穴,电子快速转移到C材料的表面并与空气中的氧气反应生成超氧自由基,后者再与吸附在光催化剂表面的染料分子反应产生低毒或无毒的降解产物.此外,CaFe2O4价带上产生的空穴也可以直接将染料分子氧化成小分子产物.  相似文献   

6.
铋系光催化剂具有良好的光催化性能,由于其Bi6s和O2p的轨道杂化,提高了价带的位置,从而减小了禁带宽度,使得铋系光催化剂在可见光范围内具有明显的吸收,已成为近年来光催化领域研究的热点。铋系光催化剂在可见光区的光催化活性虽然比传统的TiO2有明显的提高,但其量子效率不高,光生电子-空穴容易结合,对可见光的吸收有限等问题,使其离实际应用仍存在较大的距离。因此,必须采取合适的措施来提高铋系催化剂的光生载流子速率,抑制光生电子-空穴复合,增强对可见光的吸收。本文主要综述了近年来在铋系半导体光催化剂光催化性能调控方面的最新研究进展,重点就铋系半导体光催化剂的形貌控制、特殊晶面暴露、贵金属沉积、离子掺杂、非金属掺杂、半导体复合等方面进行分析和总结,并对铋系半导体光催化剂的发展方向进行展望。  相似文献   

7.
TiO_2基光催化剂迈向实际应用的关键在于更加有效地分离电荷和拓宽光吸收范围至可见光区域.通过担载助剂促进光生电荷分离以及掺杂调控能带、提高可见光吸收是实现高性能光催化剂的两个重要途径.在众多助剂中,廉价、无毒且催化性能优异的过渡金属氧化物(如Co-,Ni-,Cu-和Fe-氧化物)助剂在光催化降解污染物、水分解、CO_2还原等领域尤其引人关注.而氧缺陷作为氧化物的固有缺陷,可实现TiO_2的能带调控,提升可见光吸收性能.其中,常见的缺氧缺陷是通过导带边调控来拓宽可见光吸收范围,但其光生电子还原能力降低.因TiO_2价带空穴具有足够强的氧化能力,本文拟通过在TiO_2中引入富氧缺陷调控价带边及担载电子转移助催化剂的途径研制高效可见响应型光催化剂.本文利用超声喷雾热解过氧钛酸和湿化学浸渍法制备了Cu_xO负载富氧型TiO_2微球.采用扫描电子显微镜(SEM),透射电子显微镜(TEM),N_2吸附-脱附等温曲线,X射线衍射(XRD),X射线光电子能谱(XPS),紫外可见漫反射光谱(UV-Vis-DRS)等手段对Cu_xO负载富氧型TiO_2微球的结构特征和光谱吸收性质进行系统研究.SEM,TEM和N2吸附/脱附等温曲线结果表明,Cu_xO负载富氧型TiO_2微球是纳米颗粒紧凑堆叠的介孔微球,直径为200–2000 nm,Cu元素高度均匀分散于微球上.XRD和XPS分析表明,富氧缺陷TiO_2微球相比参照TiO_2微球具有更大的晶格参数,同时晶体中具有大量的过氧物种(Ti-O-O),证明了过氧缺陷的存在.UV-Vis-DRS和XPS的价带谱验证,富氧缺陷使得TiO_2价带顶上移,提高了可见光吸收性能.鲁米诺化学发光(CL)探针实验进一步证明,表面负载的Cu_xO助剂将表面吸附氧高效还原为活性氧物种(O2·–和H_2O_2),提高了光生电子利用率.因此,Cu_xO负载富氧型TiO_2微球表现出更快的可见光催化降解乙醛速率,分别为富氧型TiO_2、非富氧型TiO_2和Cu_xO-TiO_2的8.6、13.0和11.0倍.并且,Cu_xO负载富氧型TiO_2微球在可见光催化降解乙醛的五次循环实验中,活性基本保持不变.Cu_xO负载富氧型TiO_2微球在模拟太阳光和UV光辐照下光催化降解乙醛速率相比富氧型TiO_2微球也大幅提升,分别提升4.6和2.7倍.Cu_xO负载富氧型TiO_2微球光催化性能增强归因于富氧缺陷和Cu_xO电子转移助催化剂的协同作用.其中,富氧缺陷使得TiO_2价带边上移,拓宽可见光吸收范围,Cu_xO电子转移助剂引入界面电荷转移和多电子氧还原过程,加速光生电子利用率,促进光生电荷分离.该策略也为开发其他高效异质结光催化剂提供参考.  相似文献   

8.
采用原位碳热还原法制备了硼掺杂的β-SiC(Bx SiC)光催化剂,并考察了其可见光下光催化分解水制氢的性能.利用X射线衍射仪、X射线光电子能谱、扫描电镜及紫外-可见吸收光谱等测试方法对所制备催化剂的晶型、形貌、表面性质及能带结构进行了表征.分析结果表明,硼原子掺杂进入SiC晶格并取代了Si位点,在价带上方形成了浅受主能级,从而导致了带隙宽变窄.浅受主能级作为空穴的捕获中心可抑制光生电子和空穴的复合.因此,与SiC相比,硼掺杂SiC光催化剂在可见光下催化分解水产氢的活性大大提高.当B/Si的摩尔比为0.05时,硼掺杂SiC表现出最高的光催化产氢活性.  相似文献   

9.
TiO2因其毒性低、稳定性高、制备成本低廉而获得广泛应用,特别是作为光催化剂在降解环境污染物方面受到了广泛关注;然而,纯TiO2较大的光生载流子复合率和较宽的带隙限制了其应用.元素掺杂作为一种拓宽光催化剂光吸收能力的方法广泛应用于各种光催化剂的修饰改性,而两种具有光催化性能的TiO2相共存则能有效抑制光生载流子的复合,因此采取合适的方法有效利用这两种TiO2改性的方法制备得到更具实际应用潜质的光催化剂具有一定的可行性.本文通过简单的溶胶-凝胶过程向锐钛矿相与金红石相组成的混相TiO2中共掺杂碳和钇得到了一种活性较高的可见光响应光催化剂.采用粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电镜等表征手段研究了碳和钇掺杂对TiO2结构的影响,发现碳掺杂有利于金红石相的形成且材料具有更大的晶粒尺寸,钇掺杂则有利于锐钛矿相的形成且能细化材料的晶粒尺寸,提高材料的比表面积,导致材料更好的光催化活性.材料在30 W荧光灯光照条件下的光催化降解亚甲基蓝(MB)性能的研究显示,C-Y-TiO2样品具有比单掺杂和未掺杂样品更高的光催化活性,其顺序为C-Y-TiO2>Y-TiO2>C-TiO2>TiO2≈P25.此外,降解反应动力学研究表明C-Y-TiO2样品光降解MB的速率是未掺杂样品在相同条件下降解速率的3.5倍.不同钇掺杂含量样品的结构和光催化降解MB的研究结果表明,钇掺杂显著促进了锐钛矿相TiO2的形成.这说明钇可能仅掺杂进入锐钛矿相,因此合适的钇掺杂量才能有效形成最优化的光催化性能的混相TiO2.不同热处理温度下获得的样品的光降解MB特性也表明,一定的热处理温度有利于合适的锐钛矿相和金红石相的组成,从而有利于相间的协同效应.紫外-可见光谱和荧光光谱表征分析表明,碳和钇的掺杂都拓展了其吸收光谱到可见光区域,且抑制了光生电子和空穴对的复合,进而提高了材料的光催化活性.碳和钇共掺杂的混相TiO2具有较高可见光光催化活性的主要原因有两个方面:一是元素掺杂减小了TiO2的带隙使得材料具有可见光响应;二是金属和非金属元素在锐钛矿相与金红石相TiO2中不同的掺杂特性形成的协同效应,抑制了光生电子和空穴的复合.  相似文献   

10.
氮化碳聚合物(PCN)是一种有潜力的聚合物型半导体光催化剂,具有原料廉价、物理化学稳定性好以及合适的带边等优点,使其在光催化分解水产氢产氧、降解染料以及抑菌等方面具有很大的潜力.但是由于高电负性的N原子被低电负性的C原子均匀地取代,增加了PCN内部电子传输的难度,使得光生电子–空穴对的复合度增加,进而光催化活性降低.由于PCN的分子结构可调控,所以可以通过分子掺杂来改变氮化碳分子结构,提高光催化活性.常用的分子有机分子,比如吡啶类化合物、嘧啶类化合物以及噻吩类化合物.研究发现,强电负性元素的引入可以改变氮化碳的电子分布,所以含有两个N原子的咪唑类化合物理论上对氮化碳的光催化活性提升帮助更大.由于此类化合物还未见有报道.因此,本文将同时含有咪唑环和嘧啶环的可可碱与尿素反应,生成了咪唑环与嘧啶环共掺杂的氮化碳聚合物,并通过一系列的表征方法验证了咪唑环与嘧啶环成功引入到氮化碳聚合物结构中;然后利用紫外可见光谱(UV-vis),荧光发射光谱(PL),电子顺磁共振(EPR)等实验与DFT理论计算共同验证了咪唑环与嘧啶环共掺杂的氮化碳光学性能;最后通过光催化分解水产氧和降解罗丹明B(RhB)来评价改性后氮化碳的活性.UV-vis测试结果表明,改性后的PCN不仅本征吸收发生红移,而且在波长450到550 nm之间有一个明显的吸收峰,这是由于引入咪唑环和嘧啶环后本征n→π~*电子跃迁所致.并且改性后的PCN的禁带宽度相比于未改性有所降低,说明其可利用的可见光范围增加.PL和EPR结果表明,改性后的PCN不仅光生载流子的复合得到了极大地抑制,而且能够产生更多的孤对电子.通过XPS价带谱,莫特–肖特基曲线以及DFT理论计算推断出改性前后PCN的带边位置,发现改性后PCN的价带位置更正,说明其产生的空穴氧化能力更强.光催化分解水产氧和降解RhB发现,最优改性样品CN40的产氧和降解RhB活性分别是未改性氮化碳的4.43倍和5.1倍.这说明通过咪唑环和嘧啶环共掺杂改性后的氮化碳的光催化活性确实得到了大幅度提升.最后通过添加各种牺牲剂和ESR/DMPO表明·O_2~-和空穴是降解RhB的主要因素.综上所述,通过咪唑环和嘧啶环共掺杂改性氮化碳聚合物,不仅提高了其光吸收能力,抑制了光生载流子的复合,产生更多的孤对电子,而且使得价带位置正移,提高了价带空穴的氧化能力,光催化活性显著提高.  相似文献   

11.
Ag_3PO_4由于具有独特的活性而被广泛应用于光催化领域.然而,由于其光生电子和空穴的快速复合, Ag_3PO_4的光催化性能在几个循环之后显著下降,光腐蚀限制了它的实际应用.因此,亟需设计一种新型的复合光催化剂来抑制电子空穴对的快速复合.而Z型复合光催化剂可综合不同光催化剂的优点,克服单一光催化剂的缺点.Z方案体系使用两个窄带隙的催化剂取代宽带隙的光催化剂,从而可以捕获更多的光子.并且光催化剂的氧化还原反应分开进行,可以有效地防止电子和空穴的复合,从而大大提高复合光催化剂的性能.本文通过微波水热法和简单搅拌法成功地制备了Z机制WO_3(H_2O)_(0.333)/Ag_3PO_4复合材料.采用X射线衍射、扫描电子显微镜、X射线光电子能谱、N2吸附-解吸等温线、比表面积测定、紫外-可见光谱和光电流曲线等方法对WO_3(H_2O)_(0.333)/Ag_3PO_4复合材料进行了表征.通过这些表征,我们确定了所研究的光催化剂物相高度匹配;确定了光催化剂的形貌:确定了复合光催化剂是复合物,而不是简单的混合物;确定了光催化剂中光生电子和空穴的结合、分离效率;研究了光催化剂的吸收边以及带隙.光催化降解测试发现, WO_3(H_2O)_(0.333)/Ag_3PO_4复合材料在可见光下表现出优异的催化性能,这主要归因于WO_3(H_2O)_(0.333)/Ag_3PO_4的协同作用.其中15%WO_3(H_2O)_(0.333)/Ag_3PO_4的光催化活性最高,在4min内几乎将30m L20mol/L的次甲基蓝完全降解.并且,复合材料的稳定性也得到很大提升.经过5次循环反应后, 15%WO_3(H_2O)_(0.333)/Ag_3PO_4的降解效率仍可以维持在88.2%.相比之下,纯Ag_3PO_4的降解效率仅为20.2%.这表明添加WO_3(H_2O)_(0.333)可以显著提高Ag_3PO_4的耐光腐蚀性.最后,我们详细研究了Z-机制机理.在可见光照射下, Ag_3PO_4和WO_3(H_2O)_(0.333)的表面产生电子-空穴对.WO_3(H_2O)_(0.333)的光生电子首先转移到其导带,然后迁移到Ag_3PO_4的价带中与空穴结合.因此, Ag_3PO_4的光生电子和空穴被有效分离,光生电子连续转移到Ag_3PO_4的导带界面.这样, Ag_3PO_4的导带界面上积累了大量的电子,并且在WO_3(H_2O)_(0.333)的价带界面中积累了大量的空穴.在空穴的作用下,–OH与h~+反应生成·OH,·OH与污染物甲基蓝反应生成CO_2和H_2O.同时,大量的H~+和O_2与电子反应,在Ag_3PO_4的导带界面处产生H_2O_2.之后, H_2O_2与电子反应产生·OH,·OH与甲基蓝反应形成CO_2和H_2O.这样,光生电子和空穴连续分离,大大提高了光催化反应速度,最终催化剂的光催化活性得到极大的提高.  相似文献   

12.
石墨型氮化碳(g-C_3N_4)是一种新型非金属聚合物半导体材料,具有合理的能带结构、较好的稳定性及卓越的表面性质,因而受到了人们的广泛关注.目前,它作为光催化剂在降解污染物、光催化分解水产氢和光催化还原CO2方面正呈现出巨大的应用潜力.然而,g-C_3N_4可见光响应范围窄、比表面积较小、尤其是光生载流子易复合等缺陷制约着其光催化活性的进一步提高.针对以上问题,人们对g-C_3N_4进行了大量的改性研究,其中构建能级匹配的纳米半导体/g-C_3N_4异质结复合体是常用的有效改善g-C_3N_4光生电荷分离进而提高其光催化活性的手段.但现有相关文献往往忽略了复合体界面接触情况对光生电荷转移和分离的影响,从而在一定程度上影响对光催化性能的改善.本课题组前期工作表明,通过磷氧、硅氧功能桥的建立可加强TiO_2/Fe2O3,Zn O/BiVO_4纳米复合物的界面接触,从而促进光生电荷的迁移和分离,进而进一步提高纳米复合体的光催化活性.这样,通过构建磷氧桥有望改善TiO_2和g-C_3N_4的紧密连接,以促进光生电子由g-C_3N_4向TiO_2的迁移、改善光生载流子的分离,进而更加显著地提高g-C_3N_4的光催化活性.但是相关工作至今尚未见到报道.为此,本文通过简单的湿化学法成功地合成了磷氧(P–O)桥连的TiO_2/g-C_3N_4纳米复合体,并研究了P–O功能桥对TiO_2/g-C_3N_4纳米复合体光生电荷分离及其对光催化降解污染物及还原CO2活性的影响.结果表明,g-C_3N_4与适量的纳米TiO_2复合,尤其是g-C_3N_4与适量P–O桥连TiO_2的复合可进一步提高g-C_3N_4的光催化活性.基于气氛调控的表面光电压谱和光致发光谱等的分析,P-O桥连可促使g-C_3N_4的光生电子由g-C_3N_4向TiO_2转移,极大地促进了g-C_3N_4的光生电荷分离,因而使纳米复合体光催化活性大幅提高,其光催化降解2,4-DCP及还原CO2活性均为g-C_3N_4的3倍.此外,自由基捕获实验表明,·OH作为空穴调控的直接中间产物,其对2,4-DCP的降解起主导作用.  相似文献   

13.
采用原位碳热还原法制备了硼掺杂的β-SiC (BxSiC)光催化剂,并考察了其可见光下光催化分解水制氢的性能. 利用X射线衍射仪、X射线光电子能谱、扫描电镜及紫外-可见吸收光谱等测试方法对所制备催化剂的晶型、形貌、表面性质及能带结构进行了表征. 分析结果表明,硼原子掺杂进入SiC 晶格并取代了Si 位点,在价带上方形成了浅受主能级,从而导致了带隙宽变窄. 浅受主能级作为空穴的捕获中心可抑制光生电子和空穴的复合. 因此,与SiC相比,硼掺杂SiC光催化剂在可见光下催化分解水产氢的活性大大提高. 当B/Si 的摩尔比为0.05时,硼掺杂SiC表现出最高的光催化产氢活性.  相似文献   

14.
TiO_2光催化剂具有无毒、物理化学性质稳定及光催化活性较高等优点,因而在能源及环境净化等领域备受关注.但是,TiO_2纳米颗粒作为催化剂仍存在以下不足:(1)TiO_2带隙较宽,只能吸收利用太阳光能的紫外光部分,而照射到地球表面的太阳光大部分为可见光;(2)光生载流子(电子/空穴)的复合使得光催化活性不高;(3)纳米催化剂的回收利用困难;(4)单独使用TiO_2,成本较高;(5)针对低浓度有机污染,常见TiO_2催化剂比表面积较小,吸附富集能力较差,导致光催化降解效率较低.TiO_2自身这些缺陷大大限制了其进一步的实际应用.针对上述这些问题,我们在本研究中设计了一种简便易行的溶胶凝胶法,在较低的温度(70℃)下合成了非金属C-Cl共掺杂的TiO_2/凹凸棒(TiO_2/ATT)复合催化剂.XRD及HRTEM分析证明,通过调节反应溶液的pH可以分别合成含锐钛矿/金红石、锐钛矿/金红石/板钛矿的两相和三相的混合相TiO_2,且锐钛矿/金红石比例可以通过改变pH而进行调节.XPS分析证明,C和C1同时成功掺进TiO_2/ATT复合催化剂.UV-Vis漫反射结果显示,非金属C和C1的掺杂使得所合成复合催化剂的光吸收性能明显拓展到可见光区,因而可以充分利用可见光能进行有机污染物催化降解,而ATT作为TiO_2的载体,减少了TiO_2使用量,改善了TiO_2的表面特性和孔结构,且有利于光催化剂的回收利用.以酸性红G为目标有机污染物,在可见光照射下对复合催化剂的可见光催化活性进行了测试.结果表明,当合成反应体系的pH值为3.0时,所获得的锐钛矿/金红石/板钛矿三相TiO_2/ATT复合催化剂具有良好的可见光吸收特性,其可见光催化活性远远高于市售P25型TiO_2,对难降解的酸性红溶液G具有优异的脱色效果和良好的TOC去除性能.循环光催化实验和FTIR表征结果表明,在5次循环利用后,TiO_2/ATT复合催化剂仍表现出很高的催化活性,表明其稳定性优异.荧光分析和自由基捕获实验表明,光催化降解反应中的主要活性物种是羟基自由基、空穴和超氧自由基.TiO_2/ATT复合催化剂高效稳定的可见光催化性能主要归因于:(1)非金属C和Cl的共掺杂改善了其可见光吸收性能;(2)催化剂中的TiO_2由金红石、锐钛矿和板钛矿混合相组成,有利于抑制光生载流子的复合;(3)多孔结构的ATT作为载体提高了TiO_2的比表面积,增加了反应活性位,同时改善了孔结构,从而有利于模拟有机污染物(酸性红G)分子的吸附和降解,有利于反应产物扩散,从而提高了催化剂的可见光催化效率.  相似文献   

15.
太阳能光催化技术广泛应用于处理环境污水中.Z型光催化剂体系具有较强的氧化还原能力,降低半导体的带隙,且使导带更负,价带更正,有效拓宽光生电子-空穴空间距离,抑制其复合,大大提高了光催化剂的催化性能,因此,构筑直接的Z型光催化体系已成为光催化领域的研究热点之一.TiO_2具有较好的光催化性能和良好的化学稳定性,但其禁带较宽,只能被太阳光中约占4%的紫外光激发,对太阳光中约占50%的可见光不响应,且光生电子-空穴易复合.g-C_3N_4是非金属光催化剂,具有较好的光催化活性,可见光吸收非常强,但比表面积较小,光生电子-空穴易复合.还原氧化石墨烯(RGO)具有大的比表面积和优异的传输载流子能力,可显著提高光催化剂的比表面积,同时降低电子空穴复合效率,从而在一定程度上改善光催化剂性能.大量研究证实, TiO_2/g-C_3N_4/RGO三元异质结的光催化性能明显优于单组份TiO_2, g-C_3N_4和二元TiO_2/g-C_3N_4光催化剂,但现有制备工艺复杂且耗时,因此,简易地构筑具有高光催化性能的Z型TiO_2/g-C_3N_4/RGO三元异质结仍具有挑战性.本文采用简易的直接电纺法构筑了高光催化活性的Z型TiO_2/g-C_3N_4/RGO三元异质结光催化剂,通过调节尿素的用量成功制备了一系列不同形貌的TiO_2/g-C_3N_4/RGO三元异质结.并采用X-射线衍射、红外光谱、拉曼光谱、X射线光电子能谱、扫描电子显微镜、透射电子显微镜、紫外-可见漫反射吸收光谱、氮气吸附-脱附测试、光电化学测试和荧光光谱等技术对所制备样品的晶型、组成、形貌、光捕获能力、载流子分离能力、比表面积、光电流、阻抗、光降解性能以及羟基自由基的生成进行系统性测试.以罗丹明B为目标探针分子,考察了模拟太阳光下所制备的光催化剂的光催化活性,结果表明,尿素添加量为0.6g时,电纺构筑的TiO_2/g-C_3N_4/RGO三元异质结在60min具有99.1%的光催化降解效率,显著优于纯TiO_2, g-C_3N_4,二元TiO_2/g-C_3N_4以及制备的其它TiO_2/g-C_3N_4/RGO三元异质结光催化剂.基于光电化学测试、活性物种淬灭实验和荧光光谱分析测试羟基自由基等分析结果,提出了一个合理的Z型增强光催化活性机理.  相似文献   

16.
马占营 《分子催化》2016,30(6):575-582
采用共沉淀法制备了不同Ti/Bi摩尔比的TiO_2/Bi_2WO_6纳米异质结可见光光催化剂.采用XRD、HR-TEM、XPS及UV-vis DRS测试技术对样品的晶相结构、微观形貌、组成及吸光性能等进行了表征分析.以MB模拟环境污染物,考察了TiO_2/Bi_2WO_6纳米异质结的可见光光催化活性.结果表明,当热处理温度为700℃,n(Ti)∶n(Bi)的比值为1∶5.4,可见光照射180 min时,TiO_2/Bi_2WO_6纳米异质结对MB的降解率达80.0%,是纯Bi_2WO_6的12倍.光催化活性的提高可归因于TiO_2与Bi_2WO_6复合后可以产生能带交叠效应,从而促进光生电子-空穴对的有效分离.  相似文献   

17.
以有序介孔三氧化二铟(m-In2O3)和还原氧化石墨烯(RGO)为原料,采用紫外光照射法合成了介孔三氧化二铟/还原氧化石墨烯(m-In2O3-RGO)复合光催化剂.利用N2吸附-脱附、X射线衍射(XRD)、透射电子显微镜(TEM)、漫反射吸收光谱(DRS)和光电流测试等手段对样品进行表征.在可见光照射下,以对氯苯酚(4-CP)为目标污染物,考察了m-In2O3-RGO光催化剂的催化性能.结果表明,m-In2O3-RGO光催化剂具有完整的晶型和规则的孔道结构,有利于光生电子和空穴的分离.同时,作为固态电子受体与传输体的RGO促进了光生电子-空穴对的传输和分离,有效提高了可见光催化性能.掺杂2%(质量分数)RGO的复合光催化剂性能最佳,4 h可将4-CP降解96%以上,催化剂经多次循环使用后,其光催化活性基本保持不变.  相似文献   

18.
二氧化钛基Z型光催化剂综述(英文)   总被引:1,自引:0,他引:1  
TiO_2具有无毒、耐腐蚀、高稳定和低成本等特点,已被广泛应用于光催化领域.然而,TiO_2的禁带较宽,只能吸收仅占太阳光4%的紫外光部分,从而严重限制了TiO_2光催化材料对太阳光的有效应用.目前很多方法被用来提高TiO_2光催化效率,如金属/非金属掺杂、贵金属负载、异质结构建和与碳材料复合等,这些策略在提高光催化剂的光催化效率中,涉及到如何兼顾太阳光利用和光生空穴和电子氧化还原能力两者之间的平衡.通常,半导体禁带宽度越窄,半导体的光谱响应范围越宽、太阳光利用越多,但光生空穴和电子氧化还原能力越弱.因此,想要提高TiO_2的光催化性能,应考虑以下两个方面的平衡:即降低带隙宽度,拓展半导体的光谱响应范围;与之同时使价带电位更正,导带电位更负之间的平衡.然而,这两个点是相互矛盾的,因此很难在单组分光催化剂中同时实现这两点.然而,Z型光催化剂可以同时满足这两点要求,即:降低半导体的带隙,同时使导带更负,价带更正,因为Z光催化系统利用了两种半导体的优势,其电荷转移机制类似于自然界中绿色植物的光合作用,其中的载流子传输途径包括两步激发,类似于英文字母"Z",Z型光催化剂因此而得名.Z型光催化剂既能保留较高还原能力的光生电子和又能保留较高氧化能力的光生空穴,由于Z型光催化剂特有的优点,在光催化领域的应用越来越广泛.本文综述了TiO_2基Z型光催化剂的最新研究进展,其中包括:Z型光催化机理、应用范围和光催化活性改进方法.Z型光催化剂分为传统液相Z型光催化体系,全固态Z型光催化体系,以及最近几年发展起来的直接Z型光催化体系.它们的主要应用包括:光催化分解水产氢、二氧化碳还原制备太阳燃料、有机污染物光催化降解.论文进一步讨论了提高TiO_2基Z型光催化剂性能的方法,包括pH值调控、电子导体选择、助催化剂使用、掺杂改性、组织形貌控制、两种半导体质量比优化等.最后,提出了TiO_2基Z型光催化剂今后面临的挑战和发展前景展望.  相似文献   

19.
为了改善TiO_2光催化剂光生电子-空穴对复合率高、太阳光利用率低的缺陷,采用溶剂热法控制氧化剥离的少层Ti_3C_2MXene(DL-Ti_3C_2),制备TiO_2/DL-Ti_3C_2复合光催化剂,并通过降解罗丹明B溶液,研究其光催化性能。结果表明,TiO_2/DL-Ti_3C_2复合光催化剂能有效吸收可见光,且光催化性能明显优于DL-Ti_3C_2和P25。当溶剂热氧化温度为160℃时,复合材料具有最佳的光催化性能。当氧化温度过低时,催化剂中形成的TiO_2量不足,产生的光生电子-空穴对数量较少,导致催化剂性能较差;当氧化温度过高时,DL-Ti_3C_2减少,降低了材料导电性,光生电子-空穴对复合效率高,导致催化剂性能变差。因此,通过改变DL-Ti_3C_2的氧化温度,可以调控TiO_2/DL-Ti_3C_2复合材料中TiO_2和DL-Ti_3C_2的相对含量,使二者产生协同作用提高复合光催化剂的可见光催化活性。  相似文献   

20.
随着工业化的快速发展,化石燃料等不可再生能源的快速消耗,人类将面临不可预测的能源危机.寻找有效的方法来解决能源短缺问题已成为当今的重要研究课题.氢能是一种可以替代化石燃料的清洁可再生能源.利用半导体光催化分解水制氢技术可以将太阳能转化为氢能.目前,在已开发的半导体光催化材料中, TiO_2因具有无毒、稳定、廉价等优点而备受光催化领域关注.但是,在实际应用方面, TiO_2的光催化效率受限于其低的光子利用率和较高的光生电子-空穴复合率.许多研究表明, TiO_2不同晶面的协同作用有利于光生载流子的迁移分离,并且适量的掺杂能够捕获光生电子,从而抑制其复合.而镧系元素因其特殊4f电子结构受到广泛的关注.采用物理或化学方法将镧系离子引入TiO_2晶格中,可以影响光生电子和空穴的动力学过程,延长光生载流子的分离状态,从而提高光催化活性.本文通过简单溶剂热法成功合成了镧系离子掺杂{001}/{101}面共暴露的TiO_2纳米片.X-射线粉末衍射(XRD)、X-射线光电子能谱(XPS)和高分辨透射电子显微镜(HRTEM)的表征结果证明了镧系离子选择性掺杂在TiO_2纳米片{101}面上.结合紫外可见吸收光谱、稳态荧光、瞬态荧光衰减曲线、光电流及莫特-肖特基曲线等手段对镧系离子掺杂TiO_2光催化剂进行了表征,结果表明,镧系离子掺杂TiO_2纳米片增强了对光的吸收,同时延长光生载流子的分离状态,阻碍光生电子和空穴的复合.考察其光催化分解水制氢的性能.研究表明,在相同掺杂量(0.5 mol%RE~(3+)=Ho~(3+), Er~(3+), Tm~(3+), Yb~(3+), Lu~(3+))的TiO_2纳米片中, Yb~(3+)-TiO_2纳米片光催化剂具有优异的产氢活性,在模拟太阳光照射1 h后产氢量是纯TiO_2的4.25倍.同时讨论了不同浓度助催化剂Pt作用下的Yb~(3+)-TiO_2纳米片产氢效果,当Pt含量量为0.3wt%时,光解水产氢活性最佳, Pt/Yb~(3+)-TiO_2纳米片的产氢量是Yb~(3+)-TiO_2的2倍,纯TiO_2的8.5倍.光催化分解水产氢活性的显著提高可以归因于光生电子-空穴对在TiO_2纳米片{001}/{101}面的快速分离,以及镧系离子4f电子轨道对电子的捕获和杂质能级的产生减小了禁带宽度,这不仅延长了光生载流子的分离状态,增加了H~+还原成H_2的机会,而且还可以拓展可见光的吸收范围.可见,利用镧系离子掺杂TiO_2和共暴露{001}/{101}面协同作用是一种实现TiO_2基光催化活性提高的有效方法之一.镧系离子掺杂的策略对提高半导体纳米材料的光催化活性有显著的影响,可能在光催化、光电化学和太阳能电池领域有更广泛的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号