首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
光催化技术被认为是解决能源和环境问题的最有前途方法之一.较高光催化活性的石墨相氮化碳(g-C_3N_4)及碳掺杂TiO_2(C-TiO_2)的制备及性能一直是环境光催化研究的热点,然而,单一光催化剂存在光生电子空穴易复合及量子效率低等问题.本课题组曾通过简单的水辅助煅烧法成功制备了纳米多孔g-C_3N_4,结果发现,多孔g-C_3N_4光催化活性较体相的明显提高,但光催化效率仍不够理想,原因是光生电子空穴复合较严重.传统的制备C-TiO_2的方法亦存在一些不足,如需要添加碳源或碳组分聚集体.我们采用原位掺杂的方法合成了含有一定氧空位和活性位的纳米碳改性的C-TiO_2,后辅以简单的化学气相沉积法构建了g-C_3N_4表面修饰的g-C_3N_4@C-TiO_2.结果表明,相比纯g-C_3N_4, TiO_2及C-TiO_2,g-C_3N_4@C-TiO_2具有更高的光催化活性;但其原因及碳掺杂态的影响尚不清楚.基于此,本文采用X射线光电子能谱技术(XPS)、透射电子显微镜(TEM)、电化学阻抗谱(EIS)、光致发光谱(PL)、电子顺磁共振技术(EPR)及理论计算等手段研究了g-C_3N_4@C-TiO_2光催化活性提高的原因和机理.XPS结果表明,随着碳含量的增加,间隙掺杂产生的O-C键的峰值强度先增大后趋于稳定,而晶格取代掺杂产生的Ti-C键的峰值强度逐渐增大.Ti-O峰的减少进一步证明了更多的碳取代了氧晶格的位置.随着碳掺杂量的增加,C-TiO_2的带隙逐渐减小,因而吸收边红移;同时, g-C_3N_4@C-TiO_2的光催化降解效率先升高后降低. g-C_3N_4@C-TiO_2对RhB(苯酚)光降解的最大表观速率常数为0.036(0.039)min-1,分别是纯TiO_2, 10C-TiO_2, g-C_3N_4和g-C_3N_4@TiO_2的150(139), 6.4(6.8), 2.3(3)和1.7(2.1)倍.g-C_3N_4通过π-共轭和氢键与C-TiO_2表面紧密结合,在催化剂中引入了新的非局域杂质能级和表面态,可以更有效地分离和转移光生电子,因而光催化活性增加.由此可见,碳掺杂状态和g-C_3N_4原位沉积表面改性对g-C_3N_4@C-TiO_2复合光催化剂性能的影响很大.  相似文献   

2.
以草酸为氧源,二聚氰胺和尿素为原料,采用两步热聚合方式合成氧掺杂氮化碳纳米片催化剂(CNO)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、X射线光电子能谱分析(XPS)、荧光光谱(PL)及电化学测试等技术对催化剂进行结构表征分析。在可见光照射下通过分解水制氢反应对CNO的光催化还原性能进行评价。结果表明,草酸中的O元素通过取代氮化碳三嗪环结构中N原子直接键合到sp~2杂化碳上,形成O掺杂CNO。经O掺杂改性后的氮化碳具有良好的层状堆积结构,可见光吸收性明显提高,同时禁带宽度降低。O掺杂的引入加速了光生电子-空穴对的分离和传输,能大幅度提高氮化碳的光催化分解水制氢性能,在可见光照下达88.6μmol·h~(-1),是未掺杂CN的3.91倍。  相似文献   

3.
pH调控合成溴氧铋纳米片的底物依赖光催化特性   总被引:1,自引:0,他引:1  
艾智慧  王吉玲  张礼知 《催化学报》2015,(12):2145-2154
近年来,半导体光催化技术已广泛用于去除水中有机污染物.在各类光催化剂中,具有合适禁带宽度的溴氧铋(BiOBr,2.7 eV)材料吸引了众多研究者兴趣.通常情况下,半导体光催化降解有机污染物性能主要与光催化材料的结构性质,如物相组成、颗粒粒径、材料表面结构等相关.研究已经证实了TiO2光催化降解有机污染物具有底物依赖的特性,但是BiOBr的有机物降解特性与底物性质的关系研究尚未见文献报道.为发展高效的BiOBr太阳光催化污染净化技术,研究有机底物与BiOBr光催化降解性能的关系具有重要意义.本文分别在pH =1和pH =3条件下采用水热法合成了BiOBr纳米片(BOB-1和BOB-3),并通过X射线粉末衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),紫外-可见漫反射(DRS)等技术表征了所制备半导体光催化材料.结果表明,在不同pH条件下均能合成具有高结晶度的四方相BiOBr, BOB-1和BOB-3均由不规则的纳米片组成, BOB-3纳米片宽度大约为0.6–1.5μm,厚度大约27–44 nm,而BOB-1纳米片宽度大约为0.7–2.0μm,厚度大约50 nm.选区电子衍射观察到了BOB-1和BOB-3清晰的晶格条纹,晶格间距为0.20和0.28 nm,分别对应着四方晶系的(020)面和(110)面.选取罗丹明B(RhB)和水杨酸(SA)为典型有机底物分子,研究了BOB-1和BOB-3纳米片的底物依赖光催化特性.结果表明, BOB-1吸附SA和RhB 1 h后,吸附率分别仅为0.2%和0.8%,而BOB-3对SA和RhB的效率分别可达9.1%和12.7%;光催化降解两种底物分子的结果表明, BOB-1和BOB-3降解RhB的速率分别为4.00以及16.10 g·min–1·m2,而降解SA的速率分别为和2.35 g·min–1·m2.可见, BOB-1显示了高效降解SA的能力,而, BOB-3则表现出更强的降解RhB活性.电化学Mott-Schottky和电动电位测试结果表明, BOB-1比BOB-3有更正的价带电位和更低的表面电荷.捕获实验(KI捕获空穴, K2Cr2O7捕获电子,氩气捕获超氧负离子,异丙醇捕获羟基自由基)表明光生空穴与超氧负离子是BOB-3降解RhB的主要活性物种,而BOB-1降解SA主要是光生空穴作用,电子顺磁共振(ESR)测试进一步证实了以上结果.光电流密度测试结果表明,可见光作用下RhB可被激发到RhB*,导致BOB-3的电子空穴对分离效率高;而当电解质中存在SA时,催化剂的表面羟基与SA形成氢键,致使光生电子与空穴分离效果变差,因而光电流减少.本文提出了pH调控合成溴氧铋纳米片的底物依赖光催化降解RhB和SA机理,与BiOBr导带电位、底物分子吸附量、底物分子物理化学性质相关. BOB-1和BOB-3纳米片催化剂在可见光激发下能产生光生导带电子和价带空穴,这些光生载流子可迁移到催化剂表面.染料分子RhB在可见光作用下能发生光敏化作用生成激发态RhB*, RhB*可以将电子注入BOB-3催化剂的导带,导带上的光生电子与RhB*注入电子与吸附在其表面的氧气共同作用生成更多的超氧负离子,从而高效降解RhB.由于BOB-1比BOB-3有更正导带电势,导带电子无法直接还原氧气生成超氧负离子,仅能依靠光生空穴直接氧化RhB,导致BOB-1表现出降解RhB性能弱;对于无色的底物SA,吸附较多SA的BOB-3催化剂上的表面羟基与SA之间形成氢键作用,抑制了光生电子与空穴对的分离,导致BOB-3在可见光光催化降解SA活性弱,而BOB-1表面吸附SA较少,同时BOB-1有更负的价带电位,利用光生空穴与吸附在催化剂表面的SA反应,从而表现出高效降解SA的性能.  相似文献   

4.
石墨相氮化碳(g-C3N4)是一种新型的有机半导体材料,具有独特的层状结构、合适的能带位置、简单的制备方法以及出色的稳定性等特点,因而被广泛应用于光催化产氢领域.但是,较高的光生载流子的复合率和受限的迁移率大大地限制了g-C3N4的光催化产氢性能.目前,大量的研究证实块状g-C3N4的液相剥离、表面改性、元素掺杂、与其他半导体复合构筑异质结以及负载助催化剂等方法可以在一定程度上提高g-C3N4的光催化产氢性能.但是单一的g-C3N4改性方法往往并不能获得最理想的光催化产氢性能,因此,本文采用低温磷化法制备了二价钴(Co(II))修饰的磷(P)掺杂的g-C3N4纳米片(Co(II)/PCN),同时实现了掺杂P原子和负载空穴助催化剂Co(II),该催化剂表现出出色的光催化产氢性能.在光催化制氢过程中,铂(Pt)纳米颗粒作为电子助催化剂成功的负载在Co(II)/PCN上.光催化实验结果表明,最佳的Pt/Co(II)/PCN复合材料光催化产氢速率达到774μmol·g^?1·h^?1,比纯相的g-C3N4纳米片(89.2μmol·g^?1·h^?1)提升8.6倍.同时优化的光催化剂具有良好的光催化稳定性,并在402 nm处具有2.76%的量子产率.XRD,TEM,STEM-EDX和AFM结果证明,成功制备了纳米片状形貌的g-C3N4及其复合材料,催化剂中均匀的分布着Co和P元素.通过XPS证明了P-N的存在以及Co(II)的存在,并且Co(II)是以一种无定型的CoOOH的形式吸附在g-C3N4表面.光照后的TEM证明Pt颗粒成功的负载在Co(II)/PCN表面.UV-vis DRS表明,由于P的掺杂以及Co(II)的修饰,Co(II)/PCN相比于g-C3N4纳米片在可见光区域光吸收有了明显的增强.通过稳态和瞬态光致发光光谱分析,同时结合电化学分析表征(i-t、EIS)以及电子顺磁共振技术分析,证实了Co(II)/PCN高效光催化性能的原因可能是由于更高效的光生载流子分离效率.本文对Pt/Co(II)/PCN可能的光催化增强机理提出了设想.P的掺杂可以优化g-C3N4的电子结构,提高其光生载流子分离效率.而以Pt作为电子助催化剂,可以有效地捕获P掺杂的g-C3N4导带中的光生电子,进而发生水还原产氢反应;以Co(II)作为空穴助催化剂,可以捕获价带中的光生空穴,进而发生三乙醇胺氧化反应.通过采用不同功能的助催化剂,实现P掺杂g-C3N4光生电子空穴的定向分流,促进了P掺杂g-C3N4的光生载流子的分离,从而提高催化剂的光催化产氢性能.本文可以为设计具有空穴-电子双助催化剂的光催化产氢系统提供一个新的思路.  相似文献   

5.
近年来,半导体光催化技术已广泛用于去除水中有机污染物.在各类光催化剂中,具有合适禁带宽度的溴氧铋(BiO Br,2.7 eV)材料吸引了众多研究者兴趣.通常情况下,半导体光催化降解有机污染物性能主要与光催化材料的结构性质,如物相组成、颗粒粒径、材料表面结构等相关.研究已经证实了TiO 2光催化降解有机污染物具有底物依赖的特性,但是BiO Br的有机物降解特性与底物性质的关系研究尚未见文献报道.为发展高效的BiO Br太阳光催化污染净化技术,研究有机底物与BiO Br光催化降解性能的关系具有重要意义.本文分别在pH=1和pH=3条件下采用水热法合成了BiO Br纳米片(BOB-1和BOB-3),并通过X射线粉末衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),紫外-可见漫反射(DRS)等技术表征了所制备半导体光催化材料.结果表明,在不同pH条件下均能合成具有高结晶度的四方相BiO Br,BOB-1和BOB-3均由不规则的纳米片组成,BOB-3纳米片宽度大约为0.6–1.5μm,厚度大约27–44 nm,而BOB-1纳米片宽度大约为0.7–2.0μm,厚度大约50 nm.选区电子衍射观察到了BOB-1和BOB-3清晰的晶格条纹,晶格间距为0.20和0.28 nm,分别对应着四方晶系的(020)面和(110)面.选取罗丹明B(RhB)和水杨酸(SA)为典型有机底物分子,研究了BOB-1和BOB-3纳米片的底物依赖光催化特性.结果表明,BOB-1吸附SA和RhB 1 h后,吸附率分别仅为0.2%和0.8%,而BOB-3对SA和RhB的效率分别可达9.1%和12.7%;光催化降解两种底物分子的结果表明,BOB-1和BOB-3降解RhB的速率分别为4.00以及16.10 g·min–1·m2,而降解SA的速率分别为和2.35 g·min–1·m2.可见,BOB-1显示了高效降解SA的能力,而,BOB-3则表现出更强的降解RhB活性.电化学Mott-Schottky和电动电位测试结果表明,BOB-1比BOB-3有更正的价带电位和更低的表面电荷.捕获实验(KI捕获空穴,K2Cr2O7捕获电子,氩气捕获超氧负离子,异丙醇捕获羟基自由基)表明光生空穴与超氧负离子是BOB-3降解RhB的主要活性物种,而BOB-1降解SA主要是光生空穴作用,电子顺磁共振(ESR)测试进一步证实了以上结果.光电流密度测试结果表明,可见光作用下RhB可被激发到RhB*,导致BOB-3的电子空穴对分离效率高;而当电解质中存在SA时,催化剂的表面羟基与SA形成氢键,致使光生电子与空穴分离效果变差,因而光电流减少.本文提出了pH调控合成溴氧铋纳米片的底物依赖光催化降解RhB和SA机理,与BiO Br导带电位、底物分子吸附量、底物分子物理化学性质相关.BOB-1和BOB-3纳米片催化剂在可见光激发下能产生光生导带电子和价带空穴,这些光生载流子可迁移到催化剂表面.染料分子RhB在可见光作用下能发生光敏化作用生成激发态RhB*,RhB*可以将电子注入BOB-3催化剂的导带,导带上的光生电子与RhB*注入电子与吸附在其表面的氧气共同作用生成更多的超氧负离子,从而高效降解RhB.由于BOB-1比BOB-3有更正导带电势,导带电子无法直接还原氧气生成超氧负离子,仅能依靠光生空穴直接氧化RhB,导致BOB-1表现出降解RhB性能弱;对于无色的底物SA,吸附较多SA的BOB-3催化剂上的表面羟基与SA之间形成氢键作用,抑制了光生电子与空穴对的分离,导致BOB-3在可见光光催化降解SA活性弱,而BOB-1表面吸附SA较少,同时BOB-1有更负的价带电位,利用光生空穴与吸附在催化剂表面的SA反应,从而表现出高效降解SA的性能.  相似文献   

6.
刘超  封越  韩字童  孙耀  王晓秋  张勤芳  邹志刚 《催化学报》2021,42(1):164-174,后插28-后插31
随着人口增长和全球工业化进程加快,人们饱受环境污染和能源短缺问题的困扰.半导体光催化技术作为一种高效、可持续、环境友好、有潜力的新技术,在环境净化和能源开发方面有着广阔的应用前景.到目前为止,人们已开发出多种半导体光催化剂,并广泛应用于污染物降解、氢气制备和二氧化碳还原等领域.其中,化合物K4Nb6O17具有典型的层状结构、合适的电子能带结构、结构易改性以及良好的电荷传输性能等特点,在光催化领域得到了广泛研究.然而,单纯K4Nb6O17仍存在光响应范围窄、光生载流子复合率高等问题,限制了K4Nb6O17的进一步应用.因此,需要对K4Nb6O17进行改性,拓宽其光吸收范围,提高其光生载流子分离效率,从而提高其光催化活性.本研究通过简单焙烧法制备Z型N-掺杂K4Nb6O17/g-C3N4(KCN)异质结光催化剂,其中石墨相氮化碳(g-C3N4)在复合材料中质量比约为50%.层状K4Nb6O17层板的电子结构通过N掺杂进行调控,拓宽其光响应范围,使其具有可见光响应;同时,形成的g-C3N4位于N-掺杂K4Nb6O17的外层以及内层空间,在这两种组分之间形成异质结,有利于提高光生载流子的分离效率.荧光光谱、时间分辨荧光光谱和光电化学测试表明,N掺杂和异质结的形成有利于增强光生电子-空穴对的传输和分离效率.通过在可见光照射下降解罗丹明B(RhB)和产氢来评估材料的光催化性能.相比g-C3N4(8.24μmol/h)和Me-K4Nb6O17(~1.30μmol/h),KCN复合材料光催化产氢效率(~16.91μmol/h)得到了极大提高,并显示出极好的光催化产氢稳定性能.对于光催化降解RhB体系,KCN复合材料也显示出较好的光催化活性和稳定性,并能很好地将RhB矿化.鉴于KCN复合材料具有较小的比表面积(9.9 m^2/g)且无孔结构,认为比表面积对光催化活性影响较小.因此,与单组分相比,KCN复合材料光催化产氢和RhB降解活性都得到了极大提高,活性的增强主要归功于N掺杂和异质结形成的协同效应,其中N掺杂可以拓宽光捕获能力,异质结形成可提高电荷载流子的分离效率.电子自旋共振(ESR)谱表明,在KCN降解RhB体系中,超氧自由基(·O2^?)、羟基自由基(·OH)和空穴(h^+)作为主要活性物质都参与了反应.结合实验结果可以推测KCN复合材料满足了Z型光催化体系,该体系具有高效的光生载流子分离效率和较高的氧化还原能力.  相似文献   

7.
光催化可实现污染物降解、分解水制氢和CO2还原等多种氧化还原反应, 因而受到了广泛关注. 光催化材料中光生电荷的数目与氧化还原能力直接影响光催化反应效率, 在许多光催化反应中, 光生空穴氧化反应被认为速控步骤. 以光催化分解水为例, 质子的还原是单电子过程, 水氧化产生氧气则涉及四个电子. 空穴的高能量不仅可赋予其高的氧化能力,还能提高其迁出表面的能力, 因此具有重要研究价值.我们组的前期工作表明, 以TiB2作为前驱体, 采用水热合成和焙烧两步法可制备出间隙硼掺杂的金红石相或锐钛矿相TiO2, 间隙硼掺杂可显著降低价带顶, 提升光催化氧化水产氧性能. 然而, 在已有的结果中, 间隙硼掺杂浓度在TiO2中均呈现从内向外逐渐增加的梯度分布, 这意味着硼掺杂浓度有限, 且表层更低的价带顶不利于体相光生空穴向表面迁移, 因此亟需实现TiO2中均相的间隙硼掺杂.本文以湿化的氩气为水解环境, 将水解过程限域在TiB2的表面以减少硼原子流失; 同时提高水解温度, 使残留的硼原子形成间隙掺杂, 避免其在二次焙烧时扩散, 从而在TiB2核的表面所形成的TiO2壳层中实现均相间隙硼掺杂, 显著提高了光催化氧化水产氧活性. 多种表征结果表明, 直径约为6-10 μm的TiB2核表面形成了厚约400 nm的TiO2壳层, 在TiO2/TiB2中TiO2壳层重量比约为30%, TiO2壳层中锐钛矿相TiO2占比为65 wt%, 金红石相TiO2占比为35 wt%. TiO2壳层中间隙硼为均相分布, 硼掺杂显著降低了价带顶位置, 提高了光生空穴的氧化能力, 从而使得TiB2/TiO2展现出比未掺杂的金红石、锐钛矿相及两者混合相的TiO2均具有更高的光催化氧化水产氧的能力.  相似文献   

8.
针对氮化碳可见光利用率低和在光催化过程中光生电子与空穴易于复合的缺点,通过钴、碳共掺杂提升其光催化性能。以尿素为前驱体,维生素B12(VB12)为钴源和碳源,将二者的混合物进行一步煅烧,制备钴、碳共掺杂氮化碳(CNCoC)。结果表明,钴、碳共掺杂对氮化碳的微观形貌、骨架结构和官能团都没有造成明显影响;但是增大了产物的比表面积,调节了产物的能带结构,增加了其对可见光的吸收。更重要的是,相比于单一元素碳的掺杂,钴、碳共掺杂具有协同作用,能够更有效地提升光生电子和空穴的分离和传递效率。因此,加入6 mg VB12制备的CNCoC-6的可见光光催化分解水产氢速率达到了56.1 μmol·h-1,是纯氮化碳(CN)的3.05倍;而碳掺杂氮化碳(CNC-6)的产氢速率仅为CN的2.55倍。  相似文献   

9.
为了进一步提高聚合物半导体类石墨相氮化碳(g-C_3N_4)降解有机物的活性,通过简单的水热法复合得到碳化MoS_2/掺硫g-C_3N_4异质结(MoSC/S-CN),并在可见光下研究其罗丹明B(RhB)的降解性能。结果表明,相较于纯g-C_3N_4,最优化的MoSC/S-CN样品对可见光的吸收范围得到明显拓宽,并且在100 min内对RhB的降解效率为92.5%,比纯g-C_3N_Q性能提高68.83%。一系列的结构和光学性质表明,掺硫后再进一步与碳化MoS_2耦合可以协同作用于g-C_3N_4,改善g-C_3N_4的能带结构,加速光生电子空穴对的分离,有效提高光催化活性。  相似文献   

10.
光催化技术是一种绿色的化学技术,它可以利用取之不尽的太阳能来降解有毒污染物或者分解水产生氢气等.毋庸置疑,这项技术的核心是半导体光催化剂,在太阳光的照射下,半导体产生电子-空穴对,分别迁移至表面参与氧化还原反应.然而,半导体光催化剂中电子和空穴易快速复合以及其对太阳能中占主导的可见光利用率较低阻碍了其在实际中的应用.因此,解决这些问题,实现光催化技术的产业化应用,成为更多研究者关注的焦点.石墨相碳氮化物(g-C3N4)作为一种新型的聚合物半导体,因其来源丰富、合成简便、化学和物理性质稳定以及能带结构可调而吸引了研究人员的兴趣,但是它仍然存在上述问题.目前,提高g-C3N4光催化性能的方法大致有以下三种:改变形貌或进行元素掺杂以调节能带结构,与其他半导体复合构建异质结构来加速光生载流子的迁移,拓展可见光吸收范围.g-C3N4的光催化活性主要受自身骨架结构中的π电子传输影响,但π电子只能在波长420 nm的高能量光下才能被激发.研究可知,设计N原子上孤对电子暴露于平面外部的氮化碳结构,在可见光激发下即可产生n-π*电子跃迁,获得显著增强的光吸收能力,从而提升光催化活性.然而,这些研究仅关注了g-C3N4中N原子上孤对电子形成的n-π*跃迁,并未研究外来材料杂原子上的孤对电子是否具有相似的作用.因此,利用合适的、含孤对电子的材料来修饰g-C3N4,也有可能获得类似的n-π*电子跃迁.本工作以含芳香环结构的噻吩基丙二酸(ThA)与尿素作为前驱体,通过热聚合方法合成了具有高效n-π*电子跃迁的CN-ThAx材料,并在可见光条件下,通过降解双酚A以及分解水实验测试其光催化性能.采用漫反射光谱(DRS)、光致发光光谱(PL)、理论计算、扫描电镜(SEM)、透射电镜(TEM)和X射线光电子能谱(XPS)等表征手段分析了催化剂的光学性质、微观形貌和结构特征.通过DRS、PL和理论计算分析可知, n-π*电子跃迁可提升CN-ThAx在450–550 nm区域的光学吸收,增强材料对可见光利用效率.SEM和TEM结果显示, ThA修饰并未改变g-C3N4的形貌,结合XPS结果可知, n-π*电子跃迁不是由g-C3N4中N原子的孤对电子引起的,而是由ThA中S元素的孤对电子引起的.光催化性能测试结果也表明, ThA修饰后的CN-ThAx在可见光下具有更优的光催化性能.因此,本研究为设计具有较高可见光利用率的氮化碳材料提供了新思路.  相似文献   

11.
光催化可实现污染物降解、分解水制氢和CO_2还原等多种氧化还原反应,因而受到了广泛关注.光催化材料中光生电荷的数目与氧化还原能力直接影响光催化反应效率,在许多光催化反应中,光生空穴氧化反应被认为速控步骤.以光催化分解水为例,质子的还原是单电子过程,水氧化产生氧气则涉及四个电子.空穴的高能量不仅可赋予其高的氧化能力,还能提高其迁出表面的能力,因此具有重要研究价值.我们组的前期工作表明,以TiB_2作为前驱体,采用水热合成和焙烧两步法可制备出间隙硼掺杂的金红石相或锐钛矿相TiO_2,间隙硼掺杂可显著降低价带顶,提升光催化氧化水产氧性能.然而,在已有的结果中,间隙硼掺杂浓度在TiO_2中均呈现从内向外逐渐增加的梯度分布,这意味着硼掺杂浓度有限,且表层更低的价带顶不利于体相光生空穴向表面迁移,因此亟需实现TiO_2中均相的间隙硼掺杂.本文以湿化的氩气为水解环境,将水解过程限域在TiB_2的表面以减少硼原子流失;同时提高水解温度,使残留的硼原子形成间隙掺杂,避免其在二次焙烧时扩散,从而在TiB_2核的表面所形成的TiO_2壳层中实现均相间隙硼掺杂,显著提高了光催化氧化水产氧活性.多种表征结果表明,直径约为6–10μm的TiB_2核表面形成了厚约400 nm的TiO_2壳层,在TiO_2/TiB_2中TiO_2壳层重量比约为30%,TiO_2壳层中锐钛矿相TiO_2占比为65 wt%,金红石相TiO_2占比为35 wt%.TiO_2壳层中间隙硼为均相分布,硼掺杂显著降低了价带顶位置,提高了光生空穴的氧化能力,从而使得TiB_2/TiO_2展现出比未掺杂的金红石、锐钛矿相及两者混合相的TiO_2均具有更高的光催化氧化水产氧的能力.  相似文献   

12.
运用溶胶-凝胶法同步获得了LaCoO_3钙钛矿晶格结构内Mg~(2+)的掺杂改性及晶格结构外MgO的异质结复合改性。观察到了同步改性后LaCoO_3催化剂上水体罗丹明B(RhB)光催化降解活性的显著提升,相同实验条件下最适Mg含量改性LaCoO_3上RhB的降解率从原始LaCoO_3的58%显著提升至98%,表观一级动力学常数为改性前催化剂的4.5倍。运用X射线衍射(XRD)、氮气低温吸附-脱附(BET法)、扫描及透射电子显微镜(SEM,TEM)、傅里叶变换红外光谱(FT-IR)、X光电子能谱(XPS)、紫外-可见漫反射(DRS)及光致发光光谱(PL)等分析和表征系统探讨了改性前后催化剂的理化特征。结果表明,约10%Co~(3+)晶格结点可为Mg~(2+)掺杂取代而LaCoO_3钙钛矿结构基本保持不变,适量Mg~(2+)对Co~(3+)的掺杂取代可形成晶格畸变和杂质能级、衍生Co~(4+)及促进溶氧吸附从而有利于RhB的光催化降解,过量掺杂的Mg则可能成为光生载流子复合中心从而不利于RhB的去除。适量MgO异质结复合改性LaCoO_3一方面赋予复合催化剂较大表面积,利于RhB富集,也赋予丰富的表面羟基利于光生电子的捕获并衍生活性羟基自由基;另一方面还可能通过LaCoO_3与MgO异质结间电子的跃迁和流动以及晶格氧空位抑制光生载流子的复合,提高复合催化剂的光量子效率。  相似文献   

13.
以双氰胺和氢氧化钾为原料制备了能带可控的钾离子掺杂石墨型氮化碳(g-C3N4)光催化剂,并与碱处理的g-C3N4及g-C3N4/KOH复合催化剂进行了对比。采用X射线衍射(XRD)光谱、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱、N2吸附、电感耦合等离子体-原子发射光谱(ICP-AES)、荧光(PL)光谱、X 光电子能谱(XPS)等分析手段对制备的催化剂进行了表征。结果表明,钾离子含量对氮化碳催化剂的价带及导带位置有显著影响。此外,钾离子的引入抑制了氮化碳晶粒的生长,提高了氮化碳的比表面积以及对可见光的吸收,降低了光生电子-空穴对的复合几率。以染料罗丹明B的降解为探针反应系统研究了钾离子掺杂对g-C3N4在可见光下催化性能的影响,研究了光催化反应机理。结果表明,钾离子掺杂后氮化碳的光催化性能显著提高。制备的钾离子掺杂氮化碳催化剂表现出良好的结构及催化稳定性。  相似文献   

14.
用化学共沉淀法制备了镧和锌掺杂的铌酸铋纳米颗粒,表征了制备样品的微观结构和光催化降解性能。结果表明制备的样品对RhB表现出良好的可见光催化降解活性,且光催化效果受各种因素的影响。其中,Bi_(0.96)La_(0.04)NbO_4用量为0.15 g时,对pH=4、50 m L浓度为5 mg·L-1 RhB溶液的光催化效果最佳。光催化机理研究表明催化剂在可见光照射下产生的电子空穴对Rh B的降解起主要作用。该催化剂的制备方法简单、光催化性能稳定,5次循环后的活性仍大于95%。  相似文献   

15.
用化学共沉淀法制备了镧和锌掺杂的铌酸铋纳米颗粒,表征了制备样品的微观结构和光催化降解性能。结果表明制备的样品对RhB表现出良好的可见光催化降解活性,且光催化效果受各种因素的影响。其中,Bi0.96La0.04NbO4用量为0.15 g时,对pH=4、50 mL浓度为5 mg·L-1 RhB溶液的光催化效果最佳。光催化机理研究表明催化剂在可见光照射下产生的电子空穴对RhB的降解起主要作用。该催化剂的制备方法简单、光催化性能稳定,5次循环后的活性仍大于95%。  相似文献   

16.
葛飞跃  黄树全  颜佳  景立权  陈烽  谢萌  徐远国  许晖  李华明 《催化学报》2021,42(3):450-459,中插31-中插34
光催化技术是一种绿色的化学技术,它可以利用取之不尽的太阳能来降解有毒污染物或者分解水产生氢气等.毋庸置疑,这项技术的核心是半导体光催化剂,在太阳光的照射下,半导体产生电子-空穴对,分别迁移至表面参与氧化还原反应.然而,半导体光催化剂中电子和空穴易快速复合以及其对太阳能中占主导的可见光利用率较低阻碍了其在实际中的应用.因此,解决这些问题,实现光催化技术的产业化应用,成为更多研究者关注的焦点.石墨相碳氮化物(g-C3N4)作为一种新型的聚合物半导体,因其来源丰富、合成简便、化学和物理性质稳定以及能带结构可调而吸引了研究人员的兴趣,但是它仍然存在上述问题.目前,提高g-C3N4光催化性能的方法大致有以下三种:改变形貌或进行元素掺杂以调节能带结构,与其他半导体复合构建异质结构来加速光生载流子的迁移,拓展可见光吸收范围.g-C3N4的光催化活性主要受自身骨架结构中的π电子传输影响,但π电子只能在波长<420 nm的高能量光下才能被激发.研究可知,设计N原子上孤对电子暴露于平面外部的氮化碳结构,在可见光激发下即可产生n-π*电子跃迁,获得显著增强的光吸收能力,从而提升光催化活性.然而,这些研究仅关注了g-C3N4中N原子上孤对电子形成的n-π*跃迁,并未研究外来材料杂原子上的孤对电子是否具有相似的作用.因此,利用合适的、含孤对电子的材料来修饰g-C3N4,也有可能获得类似的n-π*电子跃迁.本工作以含芳香环结构的噻吩基丙二酸(ThA)与尿素作为前驱体,通过热聚合方法合成了具有高效n-π*电子跃迁的CN-ThAx材料,并在可见光条件下,通过降解双酚A以及分解水实验测试其光催化性能.采用漫反射光谱(DRS)、光致发光光谱(PL)、理论计算、扫描电镜(SEM)、透射电镜(TEM)和X射线光电子能谱(XPS)等表征手段分析了催化剂的光学性质、微观形貌和结构特征.通过DRS、PL和理论计算分析可知,n-π*电子跃迁可提升CN-ThAx在450-550 nm区域的光学吸收,增强材料对可见光利用效率.SEM和TEM结果显示,ThA修饰并未改变g-C3N4的形貌,结合XPS结果可知,n-π*电子跃迁不是由g-C3N4中N原子的孤对电子引起的,而是由ThA中S元素的孤对电子引起的.光催化性能测试结果也表明,ThA修饰后的CN-ThAx在可见光下具有更优的光催化性能.因此,本研究为设计具有较高可见光利用率的氮化碳材料提供了新思路.  相似文献   

17.
徐浩添  肖蓉  黄靖然  姜燕  赵呈孝  杨小飞 《催化学报》2021,42(1):107-114,后插8-后插9
氢气因其具有高燃烧热、可再生性以及燃烧产物无污染等优势被认为是一种绿色可再生能源,是取代化石燃料的候选能源之一.然而,如何利用自然界中丰富的太阳能和水资源实现光分解水制氢的关键在于开发高效的光催化剂.在尺寸明确、能级带隙匹配的纳米材料间进行完美的界面复合(异质结构筑)是实现高效太阳能-氢能转换的最佳途径.石墨相氮化碳(CN)材料因其电子结构可调和化学性能稳定等特性被光催化界所关注.然而,氮化碳材料较弱的电学性能如电荷传输能力差及电子-空穴对复合率高导致其表现出较低的光催化制氢效率.基于此,我们用盐酸对氮化碳进行质子化处理,使材料表面电荷发生改变,从而实现氮化碳的电子带隙调节和电导率提升.在此基础上,将二维碳化钛原位负载于质子化的氮化碳(PCN)纳米片表面构筑肖特基结.PCN纳米片与碳化钛纳米片间的良好界面接触促进了电荷在材料界面上传输,进而加速了氮化碳材料的电荷分离,实现了氮化碳光催化剂活性的提升.Zeta电位测试结果显示,CN和PCN的表面电位分别为?9.5和27.3 mV,表明质子化处理可以有效改变材料表面电荷,并促其与碳化钛纳米片进行静电组装.该结果进一步得到了扫描电子显微镜(SEM)和原子力显微镜(AFM)的证实.改变表面电荷使氮化碳材料的能带宽度由2.53 eV(CN)减小到2.41 eV(PCN),增强了可见光区吸收.同时,PCN的光电流密度提升了约4倍,电子阻抗和激发态电子的辐射复合都显著降低.将PCN与碳化钛复合制得复合材料(PCN-x,x=10,20,40),实验结果表明5 g的PDN最佳负载碳化钛的量为20 mg(PCN-20).在标准太阳模拟器的可见光区(>420 nm),复合材料PCN-20的光催化水分解产氢量可达2181μmol·g-1,是CN催化剂的约5.5倍,PCN的2.7倍,并且经过5次产氢循环后PCN-20仍具有稳定的氢气释放速率.以上结果表明,氮化碳材料可以通过质子化处理以及与适量的碳化钛复合实现光催化产氢性能的提升,其中碳化钛在体系中起助催化剂的作用.该研究结果可为其他半导体光催化剂的性能优化以及非贵金属助催化剂的研究提供新思路.  相似文献   

18.
采用原位碳热还原法制备了硼掺杂的β-SiC(Bx SiC)光催化剂,并考察了其可见光下光催化分解水制氢的性能.利用X射线衍射仪、X射线光电子能谱、扫描电镜及紫外-可见吸收光谱等测试方法对所制备催化剂的晶型、形貌、表面性质及能带结构进行了表征.分析结果表明,硼原子掺杂进入SiC晶格并取代了Si位点,在价带上方形成了浅受主能级,从而导致了带隙宽变窄.浅受主能级作为空穴的捕获中心可抑制光生电子和空穴的复合.因此,与SiC相比,硼掺杂SiC光催化剂在可见光下催化分解水产氢的活性大大提高.当B/Si的摩尔比为0.05时,硼掺杂SiC表现出最高的光催化产氢活性.  相似文献   

19.
TiO_2广泛用作半导体光催化材料,但由于自身对光利用率低(只吸收紫外光)、禁带宽度较大、光生载流子复合率极高,限制了它在相关领域的应用.为此,设计了Ti~(3+)离子自掺杂来克服TiO_2半导体材料的上述缺点,进而提高其光催化活性.在不引入其他元素的情况下,以TiOF_2为原料,Zn粉为还原剂,在水热条件下采用拓扑相变法原位制备了具有可见光响应的Ti~(3+)自掺杂空盒状TiO_2(记为Ti~(3+)/TiO_2)催化剂材料.掺杂金属离子可以改变半导体TiO_2的结晶度和产生晶格缺陷,形成电子或空穴的捕获中心,影响电子-空穴对的复合;同时,掺杂金属离子产生的晶格缺陷有利于Ti~(3+)和氧空位的形成,有利于提高TiO_2的量子效率.Ti~(3+)掺杂是一种既清洁又未引入其他金属离子的掺杂改性方法,它能有效保持催化剂的结构和形貌不受其他金属离子的影响.总之,金属离子掺杂有效拓展了TiO_2的光吸收范围,并极大地提高了TiO_2的光催化活性.本文研究了不同量的还原剂对催化剂空盒状TiO_2结构形貌影响,以及在可见光下光催化降解罗丹明B反应性能,发现Ti~(3+)/TiO_2催化剂均拥有非常好的光催化活性,其中R0.25催化剂在可见光下120 min,RhB降解率达到96%,是TiO_2的4倍多.且可循环使用5次的光催化循环降解实验后,表现出较高的稳定性.催化剂经过Ti~(3+)自掺杂后,对催化剂自身的空盒状结构形貌并无很大的影响,随着还原剂Zn粉的量增加,Ti~(4+)还原形成Ti~(3+)数量增加,导致形成更多的氧空位.皆为锐钛矿型TiO_2,与未掺杂Ti~(3+)的TiO_2比较发现,自掺杂Ti~(3+)的TiO_2的(105)XRD衍射峰越来越尖锐,(004)衍射峰越来越宽.随着还原剂Zn粉质量的逐渐增加,催化剂的光响应范围拓宽到可见光区,且逐渐增强.这说明Ti~(3+)的掺杂不仅提高了TiO_2在可见光的响应能力,也提高了TiO_2在紫外光范围的响应能力.另外,掺杂后的TiO_2禁带宽度的减小,使其价带上的电子更容易被可见光激发,产生更多的电子-空穴对参与光催化反应,从而提高TiO_2的光催化效率.  相似文献   

20.
TiO2广泛用作半导体光催化材料, 但由于自身对光利用率低(只吸收紫外光)、禁带宽度较大、光生载流子复合率极高, 限制了它在相关领域的应用. 为此, 设计了Ti3+离子自掺杂来克服TiO2半导体材料的上述缺点, 进而提高其光催化活性. 在不引入其他元素的情况下, 以TiOF2为原料, Zn粉为还原剂, 在水热条件下采用拓扑相变法原位制备了具有可见光响应的Ti3+自掺杂空盒状TiO2(记为Ti3+/TiO2)催化剂材料. 掺杂金属离子可以改变半导体TiO2的结晶度和产生晶格缺陷, 形成电子或空穴的捕获中心, 影响电子-空穴对的复合; 同时, 掺杂金属离子产生的晶格缺陷有利于Ti3+和氧空位的形成, 有利于提高TiO2的量子效率. Ti3+掺杂是一种既清洁又未引入其他金属离子的掺杂改性方法, 它能有效保持催化剂的结构和形貌不受其他金属离子的影响. 总之, 金属离子掺杂有效拓展了TiO2的光吸收范围, 并极大地提高了TiO2的光催化活性.本文研究了不同量的还原剂对催化剂空盒状TiO2结构形貌影响, 以及在可见光下光催化降解罗丹明B反应性能, 发现Ti3+/TiO2催化剂均拥有非常好的光催化活性, 其中R0.25催化剂在可见光下120 min, RhB降解率达到96%, 是TiO2的4倍多. 且可循环使用5次的光催化循环降解实验后, 表现出较高的稳定性. 催化剂经过Ti3+自掺杂后, 对催化剂自身的空盒状结构形貌并无很大的影响, 随着还原剂Zn粉的量增加, Ti4+还原形成Ti3+数量增加, 导致形成更多的氧空位. 皆为锐钛矿型TiO2,与未掺杂Ti3+的TiO2比较发现, 自掺杂Ti3+的TiO2的(105)XRD衍射峰越来越尖锐, (004)衍射峰越来越宽. 随着还原剂Zn粉质量的逐渐增加, 催化剂的光响应范围拓宽到可见光区, 且逐渐增强. 这说明Ti3+的掺杂不仅提高了TiO2在可见光的响应能力, 也提高了TiO2在紫外光范围的响应能力. 另外, 掺杂后的TiO2禁带宽度的减小, 使其价带上的电子更容易被可见光激发, 产生更多的电子-空穴对参与光催化反应, 从而提高TiO2的光催化效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号