首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在Zn/P/ZSM-5催化剂上研究了甲醇、二甲苯、甲苯和甲醇等不同进料下芳烃产品分布随反应积碳的变化, 发现催化剂积碳对芳构化反应、脱烷基反应和烷基化反应的影响不同. 在不同硅铝摩尔比(Si/Al 比)和Zn负载量的Zn/P/ZSM-5 催化剂上进行甲醇转化, 考察催化剂酸性位点强度、密度和类型与芳烃收率和产品分布之间的关系, 发现当强酸位点酸密度下降时, 脱烷基反应最先被抑制, 其次是芳构化反应和异构化反应, 而烷基化反应却不受影响. 在Si/Al 比为14, 3% (w) Zn 负载量的Zn/P/ZSM-5 催化剂上可得到75%左右的芳烃收率, 二甲苯收率在35%左右, 具有重要的工业应用前景.  相似文献   

2.
Summary Acid strength distribution and the distribution of aromatics formed in the FCC gasoline conversion reaction on a ZSM-5 zeolite with different Na contents have been studied. With increasing Na content in the ZSM-5 zeolite, the acid sites determined by NH3-TPD technique, especially the strong acid sites, clearly decrease. When used as catalyst for the aromatization reaction, the transformation of olefins in the FCC gasoline into aromatics is governed directly by the strong acid sites on the ZSM-5 catalyst. Only under the conditions that a ZSM-5 catalyst possesses suitable strong acid sites is reaction temperature favorable for the aromatics formed.  相似文献   

3.
采用水热合成法,在合成过程中通过添加矿化剂、尿素和改变硅源,制备了不同骨架铝落位的ZSM-5分子筛。通过SEM、XRD、BET、XRF、MAS NMR、NH_3-TPD和Py-FTIR等表征手段对分子筛的形貌、织构、骨架铝落位和酸性进行了系统研究,同时考察了不同ZSM-5分子筛催化剂甲醇制芳烃的催化性能。研究结果表明,制备的ZSM-5分子筛均具有结晶度高和形貌均一等特点,但在骨架铝落位和酸性方面存在显著差异。椭球状ZSM-5分子筛的骨架铝主要分布于直通孔道或正弦孔道中,并表现出较多的酸性位。块状分子筛中骨架铝主要落位在孔道交叉处,且具有较低的强酸量。在甲醇制芳烃反应中,骨架铝主要位于直通或正弦孔道并表现出较多酸性位的椭球状ZSM-5分子筛催化剂具有较高的活性稳定性和芳烃选择性。  相似文献   

4.
为获得较高的C2选择性,在加水(水蒸气)条件下,研究了添加CaO对甲烷氧化偶联La2O3催化剂的影响。发现CaO的添加提高了La2O3催化剂的活性,同时水的添加明显地提高了催化剂的C2选择性。在加水条件下,La2O3-CaO催化剂获得了较好的结果,其CH4转换率为20%,C2选择性超过80%。利用XRD和XPS技术对催化剂进行了表征,并对加水和不加水条件下的催化剂性能与结构变化的关系进行了讨论  相似文献   

5.
Zn/ZSM-5(NZ2) and Zn/Ni/ZSM-5(NZ3) as the catalysts for methanol to aromatics(MTA) were synthesized by a simple ultrasonic impregnation. The textural and acid properties of all catalysts were characterized using XRD, HRTEM, NH_3-TPD, Py-IR, XPS, XRF and TG techniques. The XRD and HRTEM results showed that the basic zeolite structures were not affected much with the incorporation of Zn and Ni species. However, great changes have taken place in acid properties. The Py-IR and XPS results indicated that the Zn-Lewis acid sites(ZnOH~+ species), which have stronger interaction with the zeolite framework compared with ZnO species, were generated at the expense of B acid sites with the incorporation of zinc species. Moreover, the product analysis results showed that the incorporation of zinc species promoted the primary aromatization by enhancing the dehydroaromatization and suppressing the cracking and subsequent H-transfer reaction. Furthermore, the addition of Ni species well inhibited the loss of zinc species by converting partial ZnO species to ZnOH~+ species, and thus improved the aromatization activity and catalyst stability. The catalytic performance results showed that the NZ3 possess higher conversion of methanol in a longer time and lower average rate of coke formation compared with NZ2. In addition,the NZ3 also exhibited the highest yield of BTX as the reaction proceeds.  相似文献   

6.
The dehydroaramatization of methane over W-supported ZSM-5 with varying degrees of Li^ ion-exchanged catalysts was studied with and without oxygen at 1073 K and atmospheric pressure.Catalyst activity and stability were found to be influenced by the catalyst acidity related to BrSnsted acid sites and by the presence of oxygen in the feed. The NH3-TPD and FTIR-pyridine results demonstrated that partially exchanged of H^ ions by Li^ into the W/HZSM-5 catalysts could be used to control the amount of strong acid sites on the catalyst surface. Without oxygen, the 3WHLi-Z (5:1) catalyst that has strong acid sites equal to nearly 74% of the original strong acid sites in the parent HZSM-5 exhibited the highest methane conversion and selectivity towards aromatics. However, the catalyst deactivated in a five hour period. In the presence of oxygen, the catalyst activity and stability could be improved further.The results of this study revealed that a suitable amount of strong Bronsted acid sites as well as oxygen addition in the feed increased the catalyst activity and stability. The 3WHLi-Z(5:1) catalyst exhibited improved performance in the dehydroaromatization of methane.  相似文献   

7.
CF-2是一种新型的高硅沸石。1981年我们实验室首先在二乙醇胺-甘油-Na2O-SiO2-Al2O3-H2O体系中制备成功[1],以后才见到关于Theta-1[2],ISI-1[3],KZ-2[4],NO-10[5]和ZSM-22[6]沸石的报道。  相似文献   

8.
甲醇两步制芳烃反应中低碳烯烃芳构化反应稳定性优异,为分析其内在机制,制备了不同硅铝比(nSiO2/nAl2O3)及Zn负载量的ZSM-5催化剂,以丙烯芳构化为模型反应,分析ZSM-5表面酸性对低碳烯烃芳构化反应性能的影响规律,并探究反应微观特性。发现当硅铝比由150降至75时,增加的酸密度促进了烯烃氢转移芳构化过程,使芳烃选择性由31.0%增至34.4%,但丙烯直接参与的氢转移过程也被强化,使丙烷产物选择性由28.2%增至36.0%。引入Zn助剂可将部分Brønsted酸转变为Zn-Lewis酸,强化烯烃脱氢芳构化过程,使芳烃选择性进一步显著增加到62.4%。丙烯芳构化过程中芳烃烷基化深度比甲醇芳构化过程低,提升总芳烃选择性的同时,也明显抑制了难溶性积碳的形成,使反应稳定性明显提升。由此得出,甲醇两步制芳烃过程中甲醇制低碳烯烃过程对甲醇的预先消耗,抑制了低碳烯烃芳构化反应芳烃产物的深度烷基化,是该反应表现出优异稳定性的重要原因。  相似文献   

9.
Two series of Cu/ZSM-5 catalysts,loading from 5 to 20 wt% CuO,were prepared by the deposition-precipitation and impregnation methods,respectively.The catalysts prepared by the impreg- nation method showed better catalytic performances than those prepared by the deposition-precipitation method and the increase of copper loading favored methane conversion.20Cu(I)/ZSM-5 had the highest activity with T_(90%)of 746 K,and for 20Cu(D)/ZSM-5,T_(90%)was as high as 804 K.The characteriza- tion of X-ray diffraction(XRD),temperature-programmed reduction(TPR),temperature-programmed desorption(TPD),and X-ray photoelectron spectroscopy(XPS)revealed that the dispersion of cop- per species could be improved by using the deposition-precipitation method instead of the impregnation method,but the fraction of surface CuO,corresponding to active sites for methane oxidation,was larger on 20Cu(I)/ZSM-5 than 20Cu(D)/ZSM-5.The results of Pyridine-Fourier transform infrared spectrum (Py-FT-IR)showed that a majority of Lewis acidity and a minority of Brφnsted acidity were present on Cu/ZSM-5 catalysts.20Cu(I)/ZSM-5 presented more Lewis acid sites.The number of Lewis acid sites changed significantly with preadsorption of oxygen.Adsorption of methane and oxygen on acid sites was observed.The properties of Cu/ZSM-5 catalysts were correlated with the activity for methane oxidation.  相似文献   

10.
考察了甲醇/低碳烷烃在ZSM-5分子筛上偶合转化为芳烃和低碳烯烃的反应过程。对特定的催化体系,存在一最佳原料配比,使反应的热效应近似为零。偶合转化时甲醇完全转化,低碳烷烃的转化率低;不同催化剂上偶合转化产物分布差别极大,与HZSM-5相比,Ga改性后可获得较高的芳烃和低碳烯烃收率。  相似文献   

11.
The methylation of benzene with methane over ZSM-5 zeolite catalysts in a high pressure static reactor is shown to require oxygen as a reactant, implicating methanol as a key intermediate species. In the case of zeolite H-beta, methyl aromatics can be formed in the absence of oxygen, consistent with an earlier report that these products are formed from cracking of benzene over the acid zeolite.  相似文献   

12.
The influence of adding Fe,Cr,Co,and Ga into 3%Mo/HZSM-5 catalyst on methane aromatization,and the influence of additives ratio on methane conversion,selectivity to hydrocarbons and coke,as well as distribution of aromatics were investigated.The experimental results showed that the addition of Fe,Cr,Co and Ga promoted the dehydrogenation and dissociation of methane.The results of NH3-TPD indicated that the acidity of HZSM-5 was changed by adding Fe and Co components,consequently the catalytic properties of Mo/HZSM-5 were changed.It was also revealed that strong acid sites were the center of methane aromatization.The results of XRD characterization showed that the crystallinity of Mo on ZSM-5 zeolite was increased after adding Fe,Co additives.  相似文献   

13.
Highly crystalline ZSM-5 zeolites are important for para-selective alkylation of alkyl aromatics, because they carry few external acid sites for isomerization of p-dialkyl products. Such zeolites (Si/Al = 25, 50, and 75) were synthesized in a fluoride medium between pH 4 and 6. Their crystallinities, crystal sizes, and surface areas were higher than those of a commercial ZSM-5 zeolite. Their para selectivities in alkylation were tested for vapor-phase tert-butylation of ethylbenzene between 200 and 400 °C. As expected, all the catalysts showed more than 90% para selectivity. At 300 °C, ethylbenzene conversion decreased in the order ZSM-5(25, commercial) > ZSM-5(25) > ZSM-5(50) > ZSM-5(75). The catalysts had weak, medium, and strong acid sites, but all the acid sites of ZSM-5(75) were weaker than those of ZSM-5(25) and ZSM-5(50). The high activity of commercial ZSM-5 was caused by its strong acid sites being stronger than those of the synthesized zeolites. Although the activity of the commercial catalyst was higher than those of the present catalysts, the selectivity for 4-t-butylethylbenzene (4-t-BEB) was low. The optimum feed ratio (ethylbenzene:t-butyl alcohol) was 2:1 and the feed rate was 1.65 h?1 for high ethylbenzene conversion and 4-t-BEB selectivity. Time-on-stream studies showed slow catalyst deactivation. Highly crystalline ZSM-5 zeolites are therefore better than a commercial zeolite for para-selective alkylation of alkyl aromatics. They do not require much post-modification for high para selectivity. A fluoride medium is therefore better than an alkaline medium for obtaining highly crystalline para-selective ZSM-5 zeolites.  相似文献   

14.
The reaction mechanism of methanol conversion to hydrocarbons on HZSM-5 zeolite was studied. From the selectivity plots of products in an integral fixed-bed flow reactor, paraffins were classified as primary and secondary stable products, light olefins as primary unstable products, aromatics as primary and secondary unstable or stable products. The results of the 14C-labelled methanol reaction indicated that the C1–C5 surface intermediates generated by dimethyl ether / methanol equilibrium gave paraffins and olefins at 300°C. The concentration of intermediates and adsorbed methanol on ZSM-5 decreased with increasing temperature. The distribution of radioactivity showed that propylene played an important role in the autocatalysis of the reaction.  相似文献   

15.
酸碱处理对ZSM-5分子筛物化性质和反应性能的影响   总被引:1,自引:0,他引:1  
考察了碱处理、先碱后两步酸处理对HZSM-5分子筛物化性质以及苯与甲醇烷基化反应性能的影响。结果表明,碱处理在脱除分子筛中非骨架硅的同时,提高了晶孔的利用率,也中和了分子筛的强酸中心,使催化剂活化甲醇的能力减弱,苯与甲醇反应活性降低;先碱后两步酸处理既脱除了分子筛中的非骨架铝,也恢复了一部分强酸中心,提高了苯与甲醇的反应活性。进一步考察了先碱后两步酸处理中不同碱浓度的影响,结果表明,适宜浓度的碱处理后再两步酸处理,一方面,能脱除分子筛的非骨架硅铝物种,使分子筛的颗粒粒径更加均匀;另一方面,分子筛的强酸中心有所减少,降低了催化剂的积炭失活速率,苯转化率提高15%以上。  相似文献   

16.
Direct conversion of methane using a metal-loaded ZSM-5 zeolite prepared via acidic ion exchange was investigated to elucidate the roles of metal and acidity in the formation of liquid hydrocarbons. ZSM-5 (SiO2/A12O3=30) was loaded with different metals (Cr, Cu and Ga) according to the acidic ion-exchange method to produce metal-loaded ZSM-5 zeolite catalysts. XRD, NMR, FT-IR and N2 adsorption analyses indicated that Cr and Ga species managed to occupy the alllmlnum positions in the ZSM-5 framework. In addition, Cr species were deposited in the pores of the structure. However, Cu oxides were deposited on the surface and in the mesopores of the ZSM-5 zeolite. An acidity study using TPD-NH3, FT-IR, and IR-pyridine analyses revealed that the total number of acid sites and the strengths of the BrSusted and Lewis acid sites were significantly different after the acidic ion exchange treatment.Cu loaded HZSM-5 is a potential catalyst for direct conversion of methane to liquid hydrocarbons. The successful production of gasoline via the direct conversion of methane depends on the amount of aluminum in the zeolite framework and the strength of the BrSnsted acid sites.  相似文献   

17.
The adsorption of methanol in the acid sites of zeolites has attracted a great deal of attention because of its relevance to the industrial methanol to gasoline conversion process. In this work, the B3LYP hybrid density functional method was used to investigate the adsorption behavior of methanol on Bronsted acid sites in B, Al, Ga and Fe isomorphously substituted ZSM-5 zeolites. The optimized structures reveal a physisorbed methanol interacting with the zeolite framework through two hydrogen bonds. The order of the computed adsorption energy correlates with the acid strength of the isomorphously substituted ZSM-5: B-ZSM-5《Fe-ZSM-5相似文献   

18.
研究了反应温度、空速、Mo担载量和焙烧温度对MoO3/HZSM-5催化剂上甲烷的芳构化反应的影响.HZSM-5分子筛的Bronsted酸性、孔道结构和Mo在分子筛中的分布是影响催化性能的重要因素.HZSM-5上Mo担载量为2~3%时活性最佳,在1013K反应温度下甲烷转化率可达9%,芳烃选择性大于90%.空速影响的实验表明乙烯是反应的初始产物.在此基础上提出了"甲烷酸助异裂活化"的新概念、"金属钼类碳烯中间物"的新观点和甲烷芳构化的可能机理.  相似文献   

19.
The conversion of methane to liquid fuels is still in the development process. The modified HZSM-5 by loading with Tungsten (W) enhanced its heat resistant performance, and the high reaction temperature (800℃) did not lead to the loss of W component by sublimation. The loading of ZSM-5 with Tungsten and Copper (Cu) resulted in an increment in the methane conversion, CO2, and C5+ selectivities. The high methane conversion and C5+ selectivity, and low H2O selectivity are obtained by using W/3.0Cu/ZSM-5. The optimization of methane conversion over 3.0 W/3.0Cu/ZSM-5 under different temperature and oxygen concentration using response surface methodology (RSM) are studied. The optimum point for methane conversion is 19% when temperature is 753 ℃, and oxygen concentration is 12%. The highest C5+ selectivity is 27% when temperature is 751 ℃. and oxwen concentration is 11%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号