首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   2篇
化学   4篇
  2008年   1篇
  2005年   1篇
  2004年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
The conversion of methane to liquid fuels is still in the development process. The modified HZSM-5 by loading with Tungsten (W) enhanced its heat resistant performance, and the high reaction temperature (800℃) did not lead to the loss of W component by sublimation. The loading of ZSM-5 with Tungsten and Copper (Cu) resulted in an increment in the methane conversion, CO2, and C5+ selectivities. The high methane conversion and C5+ selectivity, and low H2O selectivity are obtained by using W/3.0Cu/ZSM-5. The optimization of methane conversion over 3.0 W/3.0Cu/ZSM-5 under different temperature and oxygen concentration using response surface methodology (RSM) are studied. The optimum point for methane conversion is 19% when temperature is 753 ℃, and oxygen concentration is 12%. The highest C5+ selectivity is 27% when temperature is 751 ℃. and oxwen concentration is 11%.  相似文献   
2.
This paper deals with thermodynamic chemical equilibrium analysis using the method of direct minimization of Gibbs free energy for all possible CH4 and CO2 reactions. The effects of CO2/CH4 feed ratio, reaction temperature, and system pressure on equilibrium composition, conversion, selectivity and yield were studied. In addition, carbon and no carbon formation regions were also considered at various reaction temperatures and CO2/CH4 feed ratios in the reaction system at equilibrium. It was found that the reaction temperature above 1100 K and CO2/CH4 ratio=1 were favourable for synthesis gas production with H2/CO ratio unity, while carbon dioxide oxidative coupling of methane (CO2 OCM) reaction to produce ethane and ethylene is less favourable thermodynamically. Numerical results indicated that the no carbon formation region was at temperatures above 1000 K and CO2/CH4 ratio larger than 1.  相似文献   
3.
The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM)have been investigated over ternary and binary metal oxide catalysts.The catalysts are prepared by doping MgO-and CeO2-based solids with oxides from alkali(Li2O),alkaline earth (CaO),and transition metal groups (WO3 or MnO).The presence of the peroxide (O2^2-)active sites on the Li2O2,revealed by Raman spectroscopy,may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts.The high reducibility of the CeO2 catalyst,an important factor in the CO2-OCM catalyst activity,may be enhanced by the presence of manganese oxide species. The manganese oxide species increases oxygen mobitity and oxygen vacancies in the CeO2 catalyst.raman and Fourier Transform Infra Red (FT-IR)spectroscopies revealed the presence of lattice vibrations of metal-oxygen bondings and active sites in which the peaks carresponding to the buld crystalline structures of Li2O,CaO,WO2 and MnO are detected.The performance of 5%MnO/15?O/CeO2 catalyst is the most potential among the CeO2-based catalysts,although lower than the 2%Li2O/MgO catalyst.The 2%Li2O/MgO catalyst showed the most promising C2 hydrocarbons selectivity and yield at 98.0%and 5.7%,respectively.  相似文献   
4.
The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based solids with oxides from alkali (Li2O), alkaline earth (CaO), and transition metal groups (WO3 or MnO). The presence of the peroxide (O2-2) active sites on the Li2O2, revealed by Raman spectroscopy, may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts. The high reducibility of the CeO2 catalyst, an important factor in the CO2-OCM catalyst activity, may  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号