首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近年来,过渡金属硫化物已成为锂离子电池理想的负极材料之一。其中,MoS_2具有的独特二维层状结构使得其能够让Li+在电化学反应中可逆地嵌入和脱出,且拥有较高的理论储锂容量(670 m A·h/g)而受到广泛关注。但MoS_2作为典型的半导体材料,电导率低下且在锂离子嵌入-脱出的过程中会发生较大程度的体积收缩膨胀,所以具有较差的倍率性能和循环性能,限制了其商业化的使用。很多研究通过优化MoS_2结构或与其它导电材料复合来克服上述缺陷。Co_9S_8具有较高的电导率,但由于其迟缓的离子传输动力学表现出低的首次库仑效率及较差的循环稳定性,基于此,将MoS_2与Co_9S_8结合利用二者协同效应来提高复合材料的电化学性能。本文采用溶剂热与气相沉积法制备得MoS_2@Co_9S_8蛋黄结构复合材料电极。MoS_2与Co_9S_8均匀分布于整个蛋黄壳结构,这有利于电子和锂离子的快速传输,从而有效地提升了电极的循环性能和倍率性能。其次,蛋黄壳的空穴有效缓解了在充放电过程中的体积膨胀,及其活性位点有效缩短了离子和电子的传输距离,提高了电极反应动力学并获得高比容量。MoS_2@Co_9S_8蛋黄壳复合物的循环性能与倍率性能在同等条件下均高于Co_9S_8和MoS_2,在电流密度为0.2 A/g下循环500圈后,放电容量仍能维持在631.5 m A·h/g。  相似文献   

2.
通过液相法合成了Cu2O纳米立方体, 并在其基础上利用金属有机框架化合物(MOFs)的自组装形貌调控, 进一步构建了层级多孔Co3O4和氮杂碳双壳层的Cu2O/Co3O4@C异质结构复合材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 热重分析(TGA)、 BET比表面积及孔径分析、 拉曼光谱和X射线光电子能谱(XPS)等表征手段证实了Cu2O/Co3O4@C异质结构复合材料的成功构筑. 双壳层结构设计和丰富的层级孔道结构有效抑制了材料在充放电循环过程中的体积膨胀, 材料在循环100次后仍保持了原有的形貌和构造. 表面多孔结构对电解液的充分浸润、 异质结构的界面内建电场以及缺陷氮杂碳的表面包覆有效提升了材料的电子和离子导电能力. 异质结构设计、 形貌调控、 多孔特性和氮杂碳的协同作用, 使得Cu2O/Co3O4@C复合材料呈现出优异的电化学性能, 在0.1 A/g电流密度下的首次放电比容量达到2065 mA·h/g, 在 2 A/g电流密度下的可逆放电比容量高于360 mA·h/g, 在1 A/g电流密度下循环350次后仍有530 mA·h/g的高可逆放电比容量.  相似文献   

3.
The application of transition metal dichalcogenides(TMDs) as anode materials in sodium-ion batteries (SIBs) has been hindered by low conductivity and poor cyclability. Herein, we report the synthesis of CoxFe1-xS2 bimetallic sulfide/sulfur-doped Ti3C2 MXene nanocomposites(CoxFe1-xS2@S-Ti3C2) by a facile co-precipitation process and thermal-sulfurization reaction. The interconnected 3D frameworks consisting of MXene nanosheets can effectively buffer the volume change and enhance the charge transfer. In particular, sulfur-doped MXene nanosheets provide rich active sites for sodium storage and restrain sulfur loss during charging/discharging processes, leading the increase of specific capacity and cycling the stability of anode materials. As a result, CoxFe1-xS2@S-Ti3C2 anodes exhibited high capacity, high rate capability and long cycle life(399 mA·h/g at 5 A/g with an 94% capacity retention after 600 cycles).  相似文献   

4.
Cathodes with high cycling stability and rate capability are required for ambient temperature sodium ion batteries in renewable energy storage application. Na3V2(PO4)3 is an attractive cathode material with excellent electrochemical stability and fast ion diffusion coefficient within the 3D NASICON structure. Nevertheless, the practical application of Na3V2(PO4)3 is seriously hindered by its intrinsically poor electronic conductivity. Herein, solvent evaporation method is presented to obtain the nitrogen-doped carbon coated Na3V2(PO4)3 cathode material, delivering enhanced electrochemical performances. N-Doped carbon layer coating serves as a highly conducting pathway, and creates numerous extrinsic defects and active sites, which can facilitate the storage and diffusion of Na+. Moreover, the N-doped carbon layer can provide a stable framework to accommodate the agglomeration of the electrode upon electrode cycling. N-Doped carbon coated Na3V2(PO4)3(NC-NVP) exhibits excellent long cycling life and superior rate performances than bare Na3V2(PO4)3 without carbon coating. NC-NVP delivers a stable capacity of 95.9 mA·h/g after 500 cycles at 1 C rate, which corresponds to high capacity retention(94.6%) with respect to the initial capacity(101.4 mA·h/g). Over 91.3% of the initial capacity is retained after 500 cycles at 5 C, and the capacity can reach 85 mA·h/g at 30 C rate.  相似文献   

5.
Antimony-based materials have become promising anodes within lithium-ion batteries(LIBs)due to their low cost and the high theoretical capacity.However,there is a potential to further enhance the electrochemical performance of such antimony-based materials.Herein,Sb2Se3@C nanofibers(Sb2Se3@CNFs)are designed and obtained via a novel electrospinning method.Upon electrochemically testing as an anode within LIBs,the Sb2Se3@CNFs(annealed at 600℃)delivers a remarkably good cycling performance of 625 mAh/g at 100 mA/g after 100 cycles.Moreover,it still remains at 490 mAh/g after 500 cycles with an applied current density of 1.0 A/g.The excellent performance of the Sb2 Se3@CNFs can be attributed to the fact that the N-doped C matrices not only remit the volume expansion of materials,but also enhance the electrical and ionic conductivity thusly increasing the lithium-ion diffusion.The obtained Sb2Se3@CNFs are promising anode for LIBs in the future.  相似文献   

6.
通过共沉淀以及后续的气相硫化成功制备了横向边长约为2μm,纵向厚度约为30 nm的NiCo_2S_4六角片,并研究了其作为钠离子电池负极材料的电化学性能。电化学性能测试结果显示在1000 mA·g~(-1)的电流密度下,NiCo_2S_4电极循环60次后仍然可保持约387mAh·g~(-1)的可逆比容量。此外,NiCo_2S_4电极还具有良好的倍率性能,在200、400、800、1000和2000mA·g~(-1)的电流密度下,容量分别为542、398、347、300和217mAh·g~(-1)。通过进一步动力学机制分析发现,NiCo_2S_4电极的良好的倍率性能得益于其二维片层状结构诱导产生的赝电容。上述结果表明,NiCo_2S_4纳米六角片是一种极具潜力的钠离子电池负极材料。  相似文献   

7.
通过N-丁基-N-甲基哌啶双(氟磺酰)亚胺盐离子液体和双(氟磺酰)亚胺锂盐修饰了Li|Li10GeP2S12界面,并研究了界面的改性效果.研究结果表明,在界面处原位生成一层致密的固体电解质界面膜(SEI),具有一定流变性的离子液体可渗透到Li10GeP2S12晶粒内部;在0.1 mA/cm2的电流密度下,界面改性后的Li|Li10GeP2S12|Li对称电池可稳定循环1500 h以上,极化电压仅为30 mV.在2.5~3.6 V电压范围内,Li|Li10GeP2S12|LiFePO4电池在0.2C倍率下充放电循环的首次放电比容量为148.1 mA·h/g,库仑效率为95.8%,经过30次循环后容量保持率为90.1%.  相似文献   

8.
韩璐  秦伟 《应用化学》2018,35(8):963-968
目前,寻找新型能源成为解决能源和环境问题的关键,氢能以其高效能、无污染等优点成为研究重点。其中,开发具有高储氢量和优异循环稳定性的新材料是利用氢能的重要研究方向。近些年,Co_9S_8凭借其优良的电化学储氢性能和较高的储氢容量成为目前研究热点,但其抗粉化性能仍有待于进一步提高。本文采用溶胶凝胶法和煅烧法得到了不同质量分数TiO_2包覆Co_9S_8的电极材料,利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和电化学测试系统分析包覆材料组成与性能,研究不同质量分数的TiO_2对材料电化学储氢性能的影响。结果表明,当TiO_2质量分数为3%时,产物的储氢性能和循环稳定性最好,最大储氢容量(质量分数)为2.03%,且经过30次充放电后,其放电容量仍能保持在60%。  相似文献   

9.
Metal selenides have drawn significant attention as promising anode materials for sodium-ion batteries(SIBs)owing to their high electronic conductivity and reversible capacity.Herein,hexagonal FeNi2Se4@C nanoflakes were synthesized via a facile one-step hydrothermal method.They deliver a reversible capacity of 480.7 mA·h/g at 500 mA/g and a high initial Coulombic efficiency of 87.8%.Furthermore,a discharge capacity of 444.8 mA·h/g can be achieved at 1000 mA/g after 180 cycles.The sodium storage mechanism of FeNi2Se4@C is uncovered.In the discharge process,Fe and Ni nanoparticles are generated and distributed in Na2Se matrix homogeneously.In the charge process,FeNi2Se4 phase is formed reversibly.The reversible phase conversion of FeNi2Se4@C during cycling is responsible for the excellent electrochemical performance and enables FeNi2Se4@C nanoflakes promising anode materials for SIBs.  相似文献   

10.
皱褶表面介孔镍钴硫化物微球的制备及其超电性能   总被引:1,自引:0,他引:1  
尤春琴  罗民  阚夏梅  付蓉蓉  梁斌 《应用化学》2015,32(12):1455-1461
通过一步水热法分别合成了α-NiS、Co3S4和CoNi2S4纳米介孔电极材料,并研究了其电化学性能。 X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)研究表明,介孔硫化物是由单相纳米颗粒堆叠组装而成,其中二元系的CoNi2S4由纳米片自组装形成了具有皱褶表面的微球形貌。 电化学性能研究表明,二元系的CoNi2S4比α-NiS、Co3S4具有更高的比电容、更佳的倍率特性和优异的循环稳定性。 在扫描速率为5 mV/s时,CoNi2S4材料在6 mol/L KOH电解液中比电容高达1678.3 F/g,优于α-NiS (787.4 F/g)和Co3S4(1532.7 F/g),在扫描速率从5 mV/s增加到100 mV/s时,其电容保持率为45.8%,比α-NiS(30.2%)和Co3S4(29.3%)高出约15%。 在15A/g的电流密度下,经过900次循环充-放电后,二元系的CoNi2S4的电容仍保持在96.3%,库伦效率保持在94.3%左右,说明镍钴双金属硫化物具有优异的循环稳定性能和充放电可逆性。  相似文献   

11.
P2-type layered oxide Na0.67Fe0.5Mn0.5O2 is recognized as a very promising cathode material for sodium-ion batteries due to the merits of high capacity, high voltage, low cost, and easy preparation. However, its unsatisfactory cycle and rate performances remain huge obstacles for practical applications. Here, we report a strategy of SnO2 modification on P2-type Na0.67Fe0.5Mn0.5O2 to improve the cycle and rate performance. Scanning electron microscope(SEM) and transmission electron microscope(TEM) images indicate that an insular thin layer SnO2 is coated on the surface of Na0.67Fe0.5Mn0.5O2 after medication. The coating layer of SnO2 can protect Na0.67Fe0.5Mn0.5O2 from corrosion by electrolyte and the cycle performance is well enhanced. After 100 cycles at 1 C rate(1 C=200 mA/g), the capacity of SnO2 modified Na0.67Fe0.5Mn0.5O2 retains 83 mA·h/g(64% to the initial capacity), while the capacity for the pristine Na0.67Fe0.5Mn0.5O2 is only 38 mA·h/g(33.5% to the initial capacity). X-Ray photoelectron spectroscopy reveals that the ratio of Mn4+ increases after SnO2 modification, leading to less oxygen vacancy and expanded lattice. As a result, the capacity of Na0.67Fe0.5Mn0.5O2 increases from 178 mA·h/g to 197 mA·h/g after SnO2 modification. Furthermore, the rate performance of Na0.67Fe0.5Mn0.5O2 is enhanced with SnO2 coating, due to high electronic conductivity of SnO2 and expanded lattice after SnO2 coating. The capacity of SnO2 modified Na0.67Fe0.5Mn0.5O2 at 5 C increases from 21 mA·h/g(pristine Na0.67Fe0.5Mn0.5O2) to 35 mA·h/g.  相似文献   

12.
由于具有高安全性和优异的循环稳定性,二氧化钛(TiO2)作为负极材料被广泛地应用于锂离子电池领域。但是较差的导电性和离子传输速率限制了TiO2的进一步应用和发展。鉴于此,我们以花状NH2-MIL-125 (Ti)为前驱体和硬模板,成功合成出了具有花状结构的超细纳米TiO2/多孔氮掺杂碳片(N-doped porous carbon)复合物(记为FL-TiO2/NPC)。过程中所制备的纳米TiO2-金属有机构架(Ti-MOF)展现出由二维褶皱多孔纳米片堆积、组装而成的花状结构。一方面,二维褶皱纳米片包含TiO2纳米颗粒可以增大活性物质与电解液的接触面积;另一方面,氮掺杂多孔碳基体可以提高整体复合物的导电性和结构完整性。将所获得的FL-TiO2/NPC作为负极组装成的锂半电池, 在0.5 A·g-1、300圈后仍有384.2 mAh·g-1以及在1 A·g-1、500圈仍有279.1 mAh·g-1的比容量。进一步性能测试表明,在2 A·g-1、2000圈长循环测试后,其仍能保持256.5 mAh·g-1的比容量和接近100%的库伦效率。该优异的电化学活性和稳定性主要起源于材料独特的花状结构。我们的合成策略为今后制备高储锂性能的金属氧化物/多孔氮掺杂碳负极提供了一种新的思路。  相似文献   

13.
Metal selenides as anode materials for sodium-ion batteries have attracted considerable attention owing to their high theoretical specific capacities and variable composition and structures.However,the achievement of long cycle life and superior rate performance is challenging for these selenide materials due to the volume variation upon cycling.Herein,a composite composed of a new binary-metal selenide[Cu2SnSe3(CSS)]and carbon nanotubes(CNTs)was constructed via a hydrothermal process followed by calcination at 600℃.Benefited from the unique structure of binary-metal selenide and the conductive network of CNTs,the Cu2SnSe3/carbon nanotubes(CSS/CNT)composite exhibits excellent electrochemical performance when used as an anode material for sodium-ion batteries.A reversible specific capacity of 399 mA·h/g can be maintained at a current density of 100 mA/g even after 100 cycles.This work provides a promising strategy for rational design of binary-metal selenides upon delicate crystal phase control as electrode materials.  相似文献   

14.
采用水热法结合热处理制备了具有高结晶性的V2O5,利用X射线衍射仪、球差校正扫描透射电子显微镜和扫描电子显微镜对V2O5的物相和形貌进行了表征,发现制备的V2O5择优取向生长并且具有良好的结晶性.电化学测试结果表明,以V2O5为正极材料的电池在电流密度为0.5 A/g下首次放电比容量约为340 mA·h/g.在电流密度为5 A/g下电池的首次放电比容量为170 mA·h/g,并且循环100次后衰减为50 mA·h/g.对不同放电态的V2O5正极材料的物相进行了分析,得出了V2O5正极材料在充放电过程中发生了锌离子和质子共嵌入(脱出)的反应机理;V2O5正极材料在充放电过程中发生的非晶化和副产物碱式硫酸锌的生成是导致以V2O5作为水系锌离子电池正极材料的电池系统发生容量衰减的主要原因.  相似文献   

15.
用液相沉淀-热解法合成了一系列结构和组成不同的锂离子电池纳米锡锌复合氧化物贮锂材料, 通过XRD、TEM和电化学测试对材料进行了表征. 测试结果表明, 非晶态ZnSnO3负极材料的初始可逆贮锂容量为844 mA·h/g, ZnO·SnO2负极材料的初始可逆贮锂容量为845 mA·h/g, SnO2·Zn2SnO4复合物负极材料初始可逆贮锂容量为758 mA·h/g, 循环10周后, 三者的充电容量分别为695, 508和455 mA·h/g, 表明非晶态结构的锡锌复合氧化物具有较好的电化学性质, 随着样品中晶体的形成, 该类型负极材料的贮锂性能下降.  相似文献   

16.
采用金属硝酸盐为金属源, NaOH和Na2CO3为沉淀剂, 利用共沉淀法制备了La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物负极材料, 研究了粉体的微观结构和电化学性能, 并与传统的LaCoO3的电化学性能进行了比较. 通过扫描电子显微镜(SEM)、 X射线衍射(XRD)和N2吸附-脱附测试对其进行了表征, 结果表明, 所制备的 La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物为钙钛矿结构, 形貌为球状, 且各组成元素分布均匀, 比表面积(19.83 m2/g)较高. 储锂性能研究表明, La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物负极材料具有较高比容量、 优异的倍率性能和循环稳定性, 在200 mA/g的电流密度下, 其首次放电比容量为855.8 mA·h/g, 循环150次后, 比容量增加到771.8 mA·h/g, 远高于理论比容量(331.6 mA·h/g); 在3000 mA/g的高电流密度下循环500次后, 其仍能保持320 mA·h/g的可逆比容量, 接近其理论比容量, 容量保持率高达95.1%. La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物储锂性能的大幅度提高, 主要归因于熵稳定的晶体结构和多主元协同效应, 使其具有较大的锂离子扩散系数(11.2×10-18 cm2/s)和较高的赝电容贡献.  相似文献   

17.
具有两种不同阳离子的二元金属氧化物在钠离子电池中可发生可逆的多电子反应,是一类非常具有应用前景的高容量负极材料。在本项工作中,通过离子交换法和化学剥离法得到HTiNbO_5纳米片,采用水热法将其与蔗糖复合再经由后续热处理得到碳包覆的Ti_2Nb_2O_9纳米片材料。碳包覆的Ti_2Nb_2O_9纳米片可用作钠离子电池的负极材料,具有更高的电子导电性和多的反应活性点以及快速的离子传输通道,在50 m A?g~(-1)的电流密度下具有265.2 m Ah?g~(-1)的可逆容量。在0.5A?g~(-1)的大电流密度下,循环200圈之后比容量为160.9 m Ah?g~(-1) (容量保持率75.3%)。研究结果表明Ti_2Nb_2O_9/C纳米片在钠离子电池中具有出色的充放电性能和循环稳定性,为钠离子电池负极材料提供了可行的新选择。  相似文献   

18.
报道了Na2Ti3O7纳米片的原位生长和钠离子电池负极材料的应用。通过简单的腐蚀市售的钛片制备出相互连接的微纳结构的Na2Ti3O7纳米片。此外,腐蚀后的钛片在不用添加导电剂或粘结剂的情况下,可以直接作为电极材料使用。这种电极材料表现出优越的电化学性能,在50 mA·g–1的电流密度下具有175 mAh·g–1的可逆容量,在2000 mA·g–1的电流密度下循环3000周后,其容量仍保持120 mAh·g–1,容量保持率为96.5%。Na2Ti3O7纳米片电极的优越电化学性能归因于二维结构具有较短的离子/电子扩散路径以及无粘结剂结构能有效的增加电极的电子传导能力。结果表明,这种微纳结构能够有效地克服Na2Ti3O7作为电极材料离子/电子导电性差的缺点。因此,这种无粘结剂结构的Na2Ti3O7纳米片负极材料是一种很有潜力的钠离子负极材料。  相似文献   

19.
Low-cost lithium sulfur(Li-S)batteries afford preeminent prospect as a next-generation high-energy storage device by virtue of great theoretical capacity.Nevertheless,their applications are restricted by some challenging technical barriers,such as weak cycling stability and low poor-conductivity sulfur loading originated in notorious shuttling effect of polysulfide intermediates.Herein,free of any complicated compositing process,we design an interlayer of carbon fiber paper supported TiO2/TiO to impede the shuttle effect and enhance the electrical conductivity via physical isolation and chemical adsorption.Such a self-crystallized homogeneous interlayer,where TiO2/TiO enables absorbing lithium polysulfides(LiPSs)and TiO plays a key role of high-electron-conductivity exhibited ultrahigh capacities(1000 mA·h/g at 0.5 C and 900 mA·h/g at 1 C)and outstanding capacity retention rate(97%)after 100 cycles.Thus,our design provides a simple route to suppress the shuttle effect via self-derived evolution Li-S batteries.  相似文献   

20.
Sodium-ion batteries(SIBs)are promising for grid-scale energy storage applications due to the natural abundance and low cost of sodium.Among various Na insertion cathode materials,Na0.44MnO2 has attracted the most attention because of its cost effectiveness and structural stability.However,the low initial charge capacity for Na-poor Na0.44MnO2 hinders its practical applications.Herein,we developed a facile chemical presodiated method using sodiated biphenly to transform Na-poor Na0.44MnO2 into Na-rich Na0.66MnO2.After presodiation,the initial charge capacity of Na0.44MnO2 is greatly enhanced from 56.5 mA·h/g to 115.7 mA·h/g at 0.1 C(1 C=121 mA/g)and the excellent cycling stability(the capacity retention of 94.1%over 200 cycles at 2 C)is achieved.This presodiation strategy would open a new avenue for promoting the practical applications of Na-poor cathode materials in sodium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号