首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoactivatable (caged) fluorophores are widely used in chemistry, materials, and biology. However, the development of such molecules exhibiting photoactivable solid‐state fluorescence is still challenging due to the aggregation‐caused quenching (ACQ) effect of most fluorophores in their aggregate or solid states. In this work, we developed caged salicylaldehyde hydrazone derivatives, which are of aggregation‐induced emission (AIE) characteristics upon light irradiation, as efficient photoactivatable solid‐state fluorophores. These compounds displayed multiple‐color emissions and ratiometric (photochromic) fluorescence switches upon wavelength‐selective photoactivation, and were successfully applied for photopatterning and photoactivatable cell imaging in a multiple‐color and stepwise manner.  相似文献   

2.
Advanced fluorescence imaging, including subdiffraction microscopy, relies on fluorophores with controllable emission properties. Chief among these fluorophores are the photoactivatable fluorescent proteins capable of reversible on/off photoswitching or irreversible green-to-red photoconversion. IrisFP was recently reported as the first fluorescent protein combining these two types of phototransformations. The introduction of this protein resulted in new applications such as super-resolution pulse-chase imaging. However, the spectroscopic properties of IrisFP are far from being optimal and its tetrameric organization complicates its use as a fusion tag. Here, we demonstrate how four-state optical highlighting can be rationally introduced into photoconvertible fluorescent proteins and develop and characterize a new set of such enhanced optical highlighters derived from mEosFP and Dendra2. We present in particular NijiFP, a promising new fluorescent protein with photoconvertible and biphotochromic properties that make it ideal for advanced fluorescence-based imaging applications.  相似文献   

3.
Superresolution imaging techniques based on sequential imaging of sparse subsets of single molecules require fluorophores whose emission can be photoactivated or photoswitched. Because typical organic fluorophores can emit significantly more photons than average fluorescent proteins, organic fluorophores have a potential advantage in super-resolution imaging schemes, but targeting to specific cellular proteins must be provided. We report the design and application of HaloTag-based target-specific azido DCDHFs, a class of photoactivatable push-pull fluorogens which produce bright fluorescent labels suitable for single-molecule superresolution imaging in live bacterial and fixed mammalian cells.  相似文献   

4.
Photoactivatable fluorophores are essential tools for studying the dynamic molecular interactions within important biological systems with high spatiotemporal resolution. However, currently developed photoactivatable fluorophores based on conventional dyes have several limitations including reduced photoactivation efficiency, cytotoxicity, large molecular size, and complicated organic synthesis. To overcome these challenges, we herein report a class of photoactivatable fluorescent N‐hydroxyoxindoles formed through the intramolecular photocyclization of substituted o‐nitrophenyl ethanol (ONPE). These oxindole fluorophores afford excellent photoactivation efficiency with ultra‐high fluorescence enhancement (up to 800‐fold) and are small in size. Furthermore, the oxindole derivatives show exceptional biocompatibility by generating water as the only photolytic side product. Moreover, structure–activity relationship analysis clearly revealed the strong correlation between the fluorescent properties and the substituent groups, which can serve as a guideline for the further development of ONPE‐based fluorescent probes with desired photophysical and biological properties. As a proof‐of‐concept, we demonstrated the capability of a new substituted ONPE that has an uncaging wavelength of 365–405 nm and an excitation/emission at 515 and 620 nm, for the selective imaging of a cancer cell line (Hela cells) and a human neural stem cell line (hNSCs).  相似文献   

5.
Fluorophores and probes are invaluable for the visualization of the location and dynamics of gene expression, protein expression, and molecular interactions in complex living systems. Rhodamine dyes are often used as scaffolds in biological labeling and turn‐on fluorescence imaging. To date, their absorption and emission spectra have been expanded to cover the entire near‐infrared region (650–950 nm), which provides a more suitable optical window for monitoring biomolecular production, trafficking, and localization in real time. This review summarizes the development of rhodamine fluorophores since their discovery and provides strategies for modulating their absorption and emission spectra to generate specific bathochromic‐shifts. We also explain how larger Stokes shifts and dual‐emissions can be obtained from hybrid rhodamine dyes. These hybrid fluorophores can be classified into various categories based on structural features including the alkylation of amidogens, the substitution of the O atom of xanthene, and hybridization with other fluorophores.  相似文献   

6.
We have developed a novel design of optical nanothermometers that can measure the surrounding temperature in the range of 20–85 °C. The nanothermometers comprise two organic fluorophores encapsulated in a crosslinked polymethacrylate nanoshell. The role of the nanocapsule shell around the fluorophores is to form a well‐defined and stable microenvironment to prevent other factors besides temperature from affecting the dyes’ fluorescence. The two fluorophores feature different temperature‐dependent emission profiles; a fluorophore with relatively insensitive fluorescence (rhodamine 640) serves as a reference whereas a sensitive fluorophore (indocyanine green) serves as a sensor. The sensitivity of the nanothermometers depends on the type of nanocapsule‐forming lipid and is affected by the phase transition temperature. Both the fluorescence intensity and the fluorescence lifetime can be utilized to measure the temperature.  相似文献   

7.
The stringent limitations imposed by diffraction on the spatial resolution of fluorescence microscopes demand the identification of viable strategies to switch fluorescence under optical control. In this context, the photoinduced and reversible transformations of photochromic compounds are particularly valuable. In fact, these molecules can be engineered to regulate the emission intensities of complementary fluorophores in response to optical stimulations. On the basis of this general design logic, we assembled a functional molecular construct consisting of a borondipyrromethene fluorophore and a nitrospiropyran photochrome and demonstrated that the emission of the former can be modulated with the interconversion of the latter. This fluorophore-photochrome dyad, however, has a slow switching speed and poor fatigue resistance. To improve both parameters, we developed a new family of photochromic switches based on the photoinduced opening and thermal closing of an oxazine ring. These compounds switch back and forth between ring-closed and -open isomers on nanosecond-microsecond timescales and tolerate thousands of switching cycles with no sign of degradation. In addition, the attachment of appropriate chromophoric fragments to their switchable oxazine ring can be exploited to either deactivate or activate fluorescence reversibly in response to illumination with a pair of exciting beams. Specifically, we assembled three dyads, each based on either a borondipyrromethene or a coumarin fluorophore and an oxazine photochrome, and modulated their fluorescence in a few microseconds with outstanding fatigue resistance. The unique photochemical and photophysical properties of our fluorophore-photochrome dyads can facilitate the development of switchable fluorophores for superresolution imaging and, ultimately, provide valuable molecular probes for the visualization of biological samples on the nanometer level.  相似文献   

8.
Photoactivatable organic fluorophores and fluorescent proteins have been widely adopted for cellular imaging and have been critical for increasing temporal and spatial resolution, as well as for the development of superresolution microscopy techniques. At the same time, semiconducting nanocrystal quantum dots (QDs) have shown superior brightness and photostability compared to both organic fluorophores and proteins. As part of our efforts to develop nanoparticles with novel optical properties, we have synthesized caged quantum dots, which are nonluminescent under typical microscopic illumination but can be activated with stronger pulses of UV light. We show that ortho-nitrobenzyl groups efficiently quench QDs of different compositions and emissions and can be released from the nanoparticle surface with UV light, both in solution and in live cells. This caging is dependent on the emission of the QD, but it is effective through the visible spectrum into the nIR, offering a large array of new colors for photoactivatable probes. Like organic and protein-based photoactivatable probes, caged QDs can confer increased spatial and temporal resolution, with the added brightness and photostability of QDs.  相似文献   

9.
Single fluorophores and single-pair fluorescence resonance energy transfer were studied with a new confocal fluorescence microscope that allows, for the first time, the wavelength and emission time of each detected photon to be simultaneously measured with single molecule sensitivity. In this apparatus, the photons collected from the sample are imaged through a dispersive optical system onto a time and position sensitive photon detector. For each detected photon the detection system records its wavelength, its emission time relative to the excitation pulse, and its absolute emission time. A histogram over many photons can generate a full fluorescence spectrum and correlated decay plot for a single molecule for any time interval. At the single molecule level, this approach makes possible entirely new types of temporal and spectral correlation spectroscopies. This paper presents our initial results on simultaneous time- and wavelength-resolved fluorescence measurements of single rhodamine 6G (R6G), tetramethylrhodamine (TMR), and Cy3 molecules embedded in thin films of poly(methyl methacrylate) (PMMA), and of single-pair fluorescence resonance energy transfer between two Alexa fluorophores spaced apart by a short polyproline peptide.  相似文献   

10.
Optical highlighters are photoactivatable fluorescent molecules that exhibit pronounced changes in their spectral properties in response to irradiation with light of a specific wavelength and intensity. Here, we present a novel design strategy for a new class of caged BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophores, based on the use of photoremovable protecting groups (PRPGs) with high reduction potentials that serve as both a photosensitive unit and a fluorescence quencher via photoinduced electron transfer (PeT). 2,6-Dinitrobenzyl (DNB)-caged BODIPY was efficiently photoactivated, with activation ratios exceeding 600-fold in aqueous solutions. We then combined this photoactivatable fluorophore with a SNAP (mutant of O(6)-alkylguanine DNA alkyltransferase) ligand to obtain a small-molecule-based optical highlighter for visualization of protein dynamics, using the well-established SNAP tag technology. As proof of concept, we demonstrate spatiotemporal imaging of the fusion protein of epidermal growth factor receptor (EGFR) with SNAP tag in living cells. We also demonstrate highlighting of cells of interest in live zebrafish embryos, using the fusion protein of histone 2A with SNAP tag.  相似文献   

11.
The fluorescence emission of the dual‐fluorophore Ca2+ ion sensor molecule, calcium‐green 2 (CG‐2), has been characterized using dual‐polarization imaging at the single‐molecule level. By comparing the fluorescence intensity of individual CG‐2 molecules in two mutually orthogonal polarization image channels, information about the relative orientation of the two constituent fluorophores in the molecule is obtained. Experimental results from polarization measurements are compared with those predicted from a geometric model based on coupled‐fluorophores that are randomly distributed in space. The results confirm previous optical spectroscopy‐based predictions of the orientation of CG‐2′s fluorophores, and the general applications of this dual‐polarization imaging approach for characterizing the optical properties of molecules containing multiple fluorophores is discussed.  相似文献   

12.
There is a persistent need for small‐molecule fluorescent labels optimized for single‐molecule imaging in the cellular environment. Application of these labels comes with a set of strict requirements: strong absorption, efficient and stable emission, water solubility and membrane permeability, low background emission, and red‐shifted absorption to avoid cell autofluorescence. We have designed and characterized several fluorophores, termed “DCDHF” fluorophores, for use in live‐cell imaging based on the push–pull design: an amine donor group and a 2‐dicyanomethylene‐3‐cyano‐2,5‐dihydrofuran (DCDHF) acceptor group, separated by a π‐rich conjugated network. In general, the DCDHF fluorophores are comparatively photostable, sensitive to local environment, and their chemistries and photophysics are tunable to optimize absorption wavelength, membrane affinity, and solubility. Especially valuable are fluorophores with sophisticated photophysics for applications requiring additional facets of control, such as photoactivation. For example, we have reengineered a red‐emitting DCDHF fluorophore so that it is dark until photoactivated with a short burst of low‐intensity violet light. This molecule and its relatives provide a new class of bright photoactivatable small‐molecule fluorophores, which are needed for super‐resolution imaging schemes that require active control (here turning‐on) of single‐molecule emission.  相似文献   

13.
We have demonstrated the installation of a fluorescence property into a nonfluorescent precursor and modulation of an emission response of a pyrene fluorophore via click reaction. The synthesized fluorophores show different solvatochromicity and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties of these fluorophores, and DFT/TDDFT calculation. We observed that some of the synthesized fluorophores showed purely ICT character while emission from some of them arose from the LE state. A structureless and solvent polarity-sensitive dual emission behavior was observed for one of the triazolylpyrene fluorophores that contains an electron-donating -NMe(2) substituent (fluorophore, 7a). Conversely, triazolylpyrene with an electron-withdrawing -CN group (fluorophore, 7b) showed a solvent polarity-independent vibronic emission. The effect of ICT on the photophysical properties of these fluorophores was studied by fluorescence emission spectra and DFT/TDDFT calculations. Fluorescence lifetimes were also measured in different solvents. All of our findings revealed the delicate interplay of structure and emission properties and thus having broader general utility. As the CT to LE intensity ratio can be employed as a sensing index, the dual emissive fluorophore can be utilized in designing the molecular recognition system too. We envisage that our investigation is of importance for the development of new fluorophores with predetermined photophysical properties that may find a wide range of applications in chemistry, biology, and material sciences.  相似文献   

14.
Nonlinear optical chromophores based on dicyanodihydrofuran acceptors paired with amine donors have been found to exhibit sufficiently large fluorescence quantum yields and stability to enable single-molecule detection in polymeric hosts. To illustrate the breadth of this class, six fluorophores are presented, spanning the emission range from 505 to 646 nm. In contrast to conventional single-molecule fluorophores, the new molecules feature sensitivity to local rigidity, large ground-state dipole moments, and large polarizability anisotropies, properties that can be used to design new reporter experiments at the single-molecule level.  相似文献   

15.
Heptamethine cyanines are favorable for fluorescence imaging applications in biological systems owing to their near-infrared (NIR) absorption and emission. However, it is very difficult to quench the fluorescence of NIR dyes by the classic photoinduced electron transfer mechanism due to their relatively high-lying occupied molecular orbital energy levels. Herein, we present a simple and effective “capping” approach to readily tune the fluorescence of NIR cyanines. The resulting new functional NIR CyBX (X = O, N, or S) dyes not only retain the intact tricarbocyanine scaffold, but also have a built-in switch to regulate the fluorescence by spiro-cyclization. When compared to traditional cyanines, novel CyBX dyes have a superior character in that their NIR optical properties can be readily tuned by the intrinsic spiro-cyclization mechanism. We expect that this “capping” strategy can be extended across not only the visual spectrum but also to structurally distinct fluorophores.  相似文献   

16.
This paper reports a discharge-based optical source for fluorescence of biochemicals in microfluidic systems. Its efficacy is demonstrated using a stacked microchip that integrates a microfluidic wavelength-tunable optical source, a biochemical sample reservoir and optical filters. It is shown to excite fluorescence in l-tryptophan and DNA samples labeled by SYBR green dye. The discharge is struck in ambient air, between a metal anode and a cathode cavity that is filled with an aqueous solution, which is doped with a metal salt selected for its emission characteristics. The characteristic line spectra, which arise from energetic transitions of the metal ions that are sputtered into the glow region of the discharge, are optically filtered and guided to the biochemical sample that resides in a separate on-chip reservoir. For DNA fluorescence, a barium chloride solution is used to emit light at 454 and 493 nm. For tryptophan fluorescence, the cathode contains lead (ii) nitrate solution to provide a 280 nm emission. The resulting fluorescence from the DNA and tryptophan samples is compared to reference data. This technique can also be used to excite other fluorophores by using appropriately doped liquid cathodes having the desired emission characteristics.  相似文献   

17.
Fluorescent contrast agents with high specificity and sensitivity are valuable for accurate disease detection and diagnosis. Spherical gold nanoparticles (GNPs) can be smartly utilized for developing highly effective agents. The strong electromagnetic (plasmon) field on their surface can be very effective in influencing the electrons of fluorophores and, thus, manipulating the fluorescence output (i.e., either quenching or enhancement). Fluorescence quenching can be used for negative sensing, or for conditional de-quenching to increase the specificity. Fluorescence enhancement allows sensing to be more sensitive. The level of fluorescence alteration depends on the GNP size, the excitation and emission wavelengths and quantum yield of the fluorophore, and the distance between the GNP and the fluorophore. To understand the mechanisms of the fluorescence change by GNP, we have theoretically analyzed the parameters involved in the fluorescence alteration for commonly used fluorophores, with an emphasis on quenching. The results showed that the fluorescence of fluorophores with the excitation (Ex) and emission (Ex) wavelengths close to the GNP resonance peak tended to be significantly quenched by GNPs. For those fluorophores emitting fluorescence in red or near infrared, to achieve quenching, the distance between GNP and the fluorophore was required to be very short. In general, a shorter distance resulted in more quenching. Bigger GNPs require a shorter distance to achieve the same level of quenching. The fluorescence of a fluorophore with a lower quantum yield (especially the one with emission in far-red or near-infrared) is more difficult to be quenched by GNPs (requires very short distance). Instead, it can be enhanced. Based on the theoretical study, we have developed a near-infrared contrast agent, i.e., Cypate conjugated GNP via a short peptide spacer. Normally the fluorescence of Cypate was quenched. The spacer has a motif of a substrate for urokinase type plasminogen activator (uPA; cancer-secreting enzyme). This contrast agent emits fluorescence only in the presence of uPA, where the uPA cleaves the spacer. This design can be used in characterization of the cancer type and also in diagnosing other diseases with signature enzymes.  相似文献   

18.
There is a growing need for cellular imaging with fluorescent probes that emit at longer wavelengths to minimize the effects of absorption, autofluorescence, and scattering from biological tissue. In this paper a series of new environmentally sensitive hemicyanine dyes featuring amino(oligo)thiophene donors have been synthesized via aldol condensation between a 4-methylpyridinium salt and various amino(oligo)thiophene carboxaldehydes, which were, in turn, obtained from amination of bromo(oligo)thiophene carboxaldehyde. Side chains on these fluorophores impart a strong affinity for biological membranes. Compared with benzene analogues, these thiophene fluorophores show significant red shift in the absorption and emission spectra, offering compact red and near-infrared emitting fluorophores. More importantly, both the fluorescence quantum yields and the emission peaks are very sensitive to various environmental factors such as solvent polarity or viscosity, membrane potential, and membrane composition. These chromophores also exhibit strong nonlinear optical properties, including two-photon fluorescence and second harmonic generation, which are themselves environmentally sensitive. The combination of long wavelength fluorescence and nonlinear optical properties make these chromophores very suitable for applications that require sensing or imaging deep inside tissues.  相似文献   

19.
Concentrations of fluorophores in histological sections can be determined by measuring the optical density of photomicrographic negatives of the fluorescence emission. This method allows measurements to be made with high resolution and high sensitivity. It is necessary to determine the relationship between fluorophore concentration and emission intensity, the effects of spatial and temporal variations in the intensity of the exciting illumination, and the characteristic curve of each film. A study of these problems with two model systems is described and the procedures necessary to obtain accurate and precise results are reviewed.  相似文献   

20.
Silver island films (SIFs) were deposited on glass substrates to serve as supports. T-Lymphocytic (PM1) cell lines were labeled by Alexa Fluor 680-dextran conjugates on the membranes or by YOYO in the nuclei. The fluorescence images of the cell lines were recorded in the emission intensity and lifetime using scanning confocal microscopy. The fluorescence signals by the fluorophores bound on the cell membranes were enhanced significantly by SIF supports as compared with those on the glass. In addition to the increase in the intensity, there was a dramatic shortening of the emission lifetime. In contrast to the Alexa Fluor 680 fluorophores on the membranes, the YOYO fluorophores intercalated in the cell nuclei were not influenced significantly by the silver islands. This result can be interpreted by an effect of the distance on coupling between the fluorophores and metal particles: the fluorophores on the cell membranes are localized within, but the fluorophores in the cell nuclei are beyond the region of metal-enhanced fluorescence. Thus, the metal supports can be used to improve the detection sensitivity for target molecules on cell surfaces when they are fluorescently labeled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号