首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tendency of a gelator to gel in mixed solvents is strongly correlated with its gelation behaviors in the corresponding single solvents.  相似文献   

2.
Self-healing supramolecular gels of low-molecular-weight (LMW) molecules are smart soft materials; however, the development of self-healing LMW gelator is still a challenging task because of the lack of in-depth studies about self-healing mechanisms of LMW gels and the solvent effect on gel properties. Therefore, herein a different perspective was used to study a family of D-gluconic acetal-based gelators with variable structural fragments in 14 different solvents, and a more detailed understanding of self-assembly and self-healing mechanism of supramolecular gels was attained. Based on the critical gelation concentration, phase transition temperature, and rheological data, A8 bearing an amide group in side chain and two chlorine atoms linked to benzene ring was found to be an outstanding gelator, which could form gels with good self-healing ability in a variety of solvents. Interestingly, A8 gel formed in n-BuOH demonstrates high transparency, good mechanical strength, self-supporting behavior, and great self-healing ability from mechanical damage. Based on the Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and theoretical calculation analysis, the self-assembly and self-healing mechanisms of A8 gel were proposed, indicating that a combination of hydrogen bonding and halogen effect was responsible for the efficient self-healing behavior of supramolecular gel. Furthermore, the analysis of solvent parameters indicated that the dispersion force of solvent favored gelators to self-assemble, hydrogen bonding donor ability of solvent mainly affected the formation of one-dimensional assembly, and hydrogen bonding receptor ability and polarity of solvent mainly influenced the supramolecular interactions among assemblies, significantly intervening the self-healing ability of gels. Overall, this study provides a new perspective to the understanding of gelator structure–property correlation in solvents and sheds light for future development of self-healing supramolecular gels.  相似文献   

3.
A novel class of amphiphiles, sodium N-(n-dodecyl-2-aminoethanoyl)-l-amino acidate, have been synthesized. These amphiphiles have been shown to form oil-in-water-type gel emulsions with a high internal-phase ratio in organic solvents as well as in commercial fuels simply by agitation. No heating and cooling cycle was required for the formation of gels. The amphiphiles also showed efficient phase-selective gelation in the presence of excess water. The minimum gelator concentrations for the amphiphiles in the solvents employed have been determined. The effects of the chain length of the hydrocarbon tail and the chirality of a representative amphiphile on its ability to promote gelation in a given organic solvent have been investigated. Also, the effect of acid and alkali on the gelation has been examined. The optical microscopic picture of the gel emulsion showed foamlike structures with oil compartments separated by the continuous aqueous phase. The mechanism of the formation of gel emulsions has been discussed.  相似文献   

4.
以3,6-二甲基-2,5-吡嗪二羧酸(P)和三聚氰胺(M)为组分,采用不同的摩尔比(1∶1,1∶2,1∶3)混合配制了3个样品PM11,PM12和PM13,并对其凝胶性能进行了测试.实验结果表明,PM能在水中及部分含水有机溶剂中形成稳定的凝胶,这些凝胶对酸碱具有良好的响应性能.采用扫描电子显微镜分析了3种水凝胶的微观形貌,均为纤维状的网络结构;红外光谱及紫外光谱测试结果表明氢键是形成凝胶的关键驱动力;XRD测试结果显示凝胶为层状结构.对PM12在不同pH值的水中的凝胶性能测试结果表明,在pH=3~11的范围内PM12均能形成凝胶.测试了PM12在混合溶剂中的凝胶性能,并将测试结果与混合溶剂的Hansen溶解度参数关联,以便用于分析溶剂与凝胶因子间的相互作用,所得结果亦表明氢键在凝胶形成的过程中起重要作用.  相似文献   

5.
Sugar based low-molecular-mass organogelator (LMOG) methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside, is a unique gelator because its small and weakly-interacting molecules can form large supramolecular structures in nonpolar, but also in polar, solvents and cause their gelation. The self-assembling properties of the gelator were studied in selected nonpolar and polar solvents. It was shown that the driving forces for both types of solvent are the intermolecular hydrogen bond interaction. The effect of the nature of the solvent on the thermal stability of the gels and on the three-dimensional network organization was determined. Different solvent parameters, such as dielectric constant, one-component solubility parameter, the polarity parameter and the Kamlet-Taft parameters were considered to quantify solvent effects on the gelation. Some correlation between these parameters and the gel stability, microstructure and the enthalpy of the phase transition were established. The effort to correlate the Kamlet-Taft parameters to the thermal stability and gelation ability is also possible but applies only to the studied gelator.  相似文献   

6.
The gelation of multi-component solvent mixtures with lithium salts was investigated in the presence of gelator 4, 4′bis(stearoylamino)diphenyl ether (BSDE). Ordered structures can be formed by non-covalent interactions in both miscible and non-miscible solvent mixtures. In a non-miscible solvent mixture, there was a soluble competition for BSDE, which can be explained by the different polarities of the solvents. The presence of lithium salt in the solvent mixtures seems to not affect the microscopic morphologies of the aggregates. TEM and SEM images of the gels indicated that BSDE aggregated and self-assembled into flexual, wrinkled and interconnected sheets in the solvent mixtures. These sheet-like aggregates are different from the fibril-like aggregates formed in single component solvents as reported previously. The ion conductivity of the organogels formed by these solvent mixtures confirms that the three-dimensional network does not affect the ions diffusion in the large interconnected liquid domains. The organogels of solvent mixtures containing lithium salts exhibit high conductivities which are in the range of 10−1–10−2 S cm−1 at room temperature, and in the range of 10−3–10−4 S cm−1 at −40 °C.  相似文献   

7.
8.
A novel class of toluene based bis urea compounds carrying linear fatty acid units and semicarbazide linkages has been synthesised. The compounds were exhibiting thermoreversible gelation at concentrations below 10 mg/mL in common organic solvents, both aliphatic and aromatic. The effect of the chain length variation of fatty acid units on gelation properties like gelation concentration, gelation time and gel melting temperatures were studied. Choosing a particular gelator of fixed chain length and a specific solvent, the effect of the concentration on the gelation properties were studied. The thermal studies using DSC revealed the presence of phase transitions corresponding to the premelting and melting of the gels during the heating cycle. The morphology of the xerogels studied using SEM revealed a three dimensional network structure while the WAXS studies showed no crystallinity in the xerogels. IR spectra of the gels (solvent subtracted) and solutions in the corresponding solvent showed that a high degree of inter-molecular H bonding exists and absorptions corresponding to NH stretching shifted to lower wave numbers. Thus simple bisurea type of compounds exhibiting gelation ability in a wide range of solvents can be used for making functional gels for various applications.  相似文献   

9.
一种含芘葡萄糖衍生物的合成及其胶凝行为   总被引:3,自引:0,他引:3  
合成并表征了一种荧光活性小分子胶凝剂——芘磺酰基-丙二胺-葡萄糖(PSDAPG), 考察了其在36种常见溶剂中的胶凝行为. 结果发现, PSDAPG可使其中16种溶剂胶凝. 对癸醇, PSDAPG表现出罕见的超级胶凝能力, 室温下最低胶凝浓度(MGC)达7.0×10-4 g·mL-1. 此外, PSDAPG还是一种既可胶凝水又可胶凝有机溶剂的双性胶凝剂. 扫描电镜(SEM)、傅立叶变换红外光谱(FTIR)、核磁共振(1HNMR)和荧光光谱研究表明,在不同溶剂中, PSDAPG具有不同的聚集结构, 除了芘基之间的疏水π-π堆积作用外, 氢键作用是PSDAPG自发形成三维网络结构的重要驱动力. 实验研究还表明, 溶液态和凝胶态的PSDAPG荧光光谱均同时呈现芘的单体荧光和激基缔合物荧光光谱特征, 但两者的光谱形貌差异显著. 随凝胶的形成, 体系单体荧光发射增强, 激基缔合物荧光发射减弱,表明形成的三维网络结构阻碍了PSDAPG中芘单元的运动性, 使得以Birks途径形成激基缔合物的效率降低.  相似文献   

10.
Low molecular weight gelators have recently been used as a template to construct novel kind of composite materials of different shape or structures such as helix, fibers, tape or tube through the electrostatic interaction between gelators and the intermediate molecules. In this article, we intricately apply the non-electrostatic interaction between gelator and fluorescent molecules to fabricate the gel fibers. To achieve our goal, we have intentionally designed pyridine containing cholesterol-based gelators 1-3 by keeping one thing in our mind that during the formation of the stacking column the pyridine moieties will be arranged like a spiral staircase around the cholesterol column. The gelation properties of these three gelators are tested in different solvents including sublimable solvents like naphthalene and the gelator 1 has emerged as a ‘supergelator’. The morphologies strongly depend on the process of solvent removal from the gel state and the stabilities of gel have been tuned by the added metal ions like Ag(I) by using metal-ligand interaction. Lastly, we have decorated the gel fibers obtained from gelator 1 with fluorescent molecules like tetraphenyl porphyrin Zn(II) [4·H and 4·Zn] having photopolymerizable unit at the end of tether groups and the modified fibers are well characterized by UV-vis absorption spectroscopy, confocal laser scanning microscopy as well as transmission electron microscopy. This is a novel example of decoration of gel fibers with fluorescent molecules and the process will offer an alternate application in photochemical and electrochemical devices.  相似文献   

11.
The studies of the gel-to-sol phase transition by the Raman, FT-IR, and 1H NMR methods of the gel made by low molecular weight organogelator 1,2-O-(1-ethylpropylidene)-alpha-D-glucofuranose with toluene as the solvent are reported. The FT-IR spectra revealed the existence of a hydrogen bond network formed by gelator molecules in the crystalline and gel phase. In both phases, the network formation is dominated by the gelator self-interaction. Upon gelation, only one stretching band of infrared absorption modes nualpha, assigned to the O(6)H hydroxyl protons of gelator, is shifted by Deltaupsilonalpha = 25 cm-1, which indicates the involvement of this proton in the interaction with the solvent molecules. The phase transition measurements performed as a function of gelator concentration allowed the calculation of the energy correlated with the transition from gel to solution phase. The obtained value of 72 kJ/mol is the largest one reported up until now for monosaccharide-based gels. The analysis of the temperature measurements of the toluene 1H NMR spectra provides evidence for a different chemical environment of toluene molecules in the gel. The toluene spin-lattice relaxation in bulk and gel indicate that the viscosity is most likely the main factor that influences the dynamics of toluene.  相似文献   

12.
The synthesis of a new saccharide-based gelator (2) containing a donor moiety has been described. Gelation experiments of a dual-component gel consisting of a saccharide-based gelator bearing an acceptor group (1) and of 2 have been performed in a variety of organic solvents and water. Moreover, gelation tests at different molar ratios of 1 and 2 have been performed in water, octanol, and diphenyl ether. In these last two solvents a gel color change was observed, from colorless to yellow, upon cooling of the sample to room temperature. This phenomenon was further investigated by UV-visible spectroscopy, which revealed the presence of charge-transfer interactions in the gel, in octanol. Temperature-dependence UV spectroscopy confirmed that such interactions occur in the gel but not in the corresponding solution sample. Furthermore, T(gel) measurements show that dual-component gels of 1 and 2 present increased thermal stability at a 50:50 ratio of the two gelators, in dependence of the solvent. Transmission electron microscopy (TEM) images of the single-component gels in diphenyl ether revealed that they consist of a fibrous network, while the dual-component gel presents a novel, helical, fibrous-bundle structure.  相似文献   

13.
A twin-tailed glutamate-based lipid with a pyridine headgroup was prepared in good yield using standard amide coupling and protection/deprotection chemistry. The resulting Lewis basic lipid gels a wide array of hydrocarbon solvents at a critical gelation concentration (C(g)) of 0.3 wt %. The gelation of more polar solvents, such as ethanol, THF, dichloromethane, and chloroform, occurs with a C(g) of between 2 and 5 wt %, demonstrating the importance of hydrogen bonding interactions in gel formation. The importance of hydrogen bonding in this system was also demonstrated by IR observation of the amide bands, which show a substantial shift upon gelation. Solutions of this new organogelator with concentrations below C(g) rapidly form gels upon the introduction of a wide variety of metal salts or complexes, providing a convenient general method for the preparation of metallogelators. Spectroscopic evidence suggests that the enhanced gelation seen in the metal-containing systems can be explained by a cross-linking of gel fibril aggregates similar to those formed by the unmetalated gelator.  相似文献   

14.
Reported herein is the discovery of a novel family of "clicked" estradiol-based LMWGs whose gelation ability highly depends on the gelator symmetry. These LMWGs that gel different organic solvents in the presence of H(2)O even at concentrations as low as 0.04 wt% are readily accessible using "click" chemistry.  相似文献   

15.
A series of new π‐conjugated gelators that contain various aromatic rings (phenyl, naphthyl, 9‐anthryl) and amphiphilic L ‐glutamide was designed, and their gel formation in organic solvents and self‐assembled nanostructures was investigated. The gelators showed good gelation ability in various organic solvents that ranged from polar to nonpolar. Those gelator molecules with small rings such as phenyl and naphthyl self‐assembled into nanotube structures in most organic solvents and showed strong blue emission. However, the 9‐anthryl derivative formed only a nanofiber structure in any organic solvent, probably owing to the larger steric hindrance. All of these gels showed enhanced fluorescence in organogels. Furthermore, during the gel formation, the chirality at the L ‐glutamide moiety was transferred to the nanostructures, thus leading to the formation of chiral nanotubes. One of the nanotubes showed chiral recognition toward the chiral amines.  相似文献   

16.
合成了3个系列各6类的偶氮苯衍生物1a~6a, 1b~6b和1c~6c. 凝胶性能测试结果表明, 这些化合物均能在多种极性或非极性有机溶剂中形成凝胶. 运用扫描电子显微镜和核磁共振波谱仪对代表性化合物4b形成的凝胶结构和成胶驱动力进行了分析. 化合物4a~4c形成的凝胶在紫外光和可见光照射下, 能够发生凝胶-溶胶的相互转化. 计算了溶剂和凝胶因子的梯氏参数, 利用梯氏三角图分析了凝胶测试结果, 发现凝胶因子在溶剂中的4种行为(溶液、 半凝胶、 凝胶和沉淀)分别分布在三角图的不同区域; 在凝胶区域, 溶剂与凝胶因子之间的距离反映了凝胶的热稳定性, 距离越远表示凝胶的热稳定性越好.  相似文献   

17.
18.
We developed novel supramolecular gelators with simple molecular structures that could harden a broad range of solvents: aqueous solutions of a wide pH range, organic solvents, edible oil, biodiesel, and ionic liquids at gelation concentrations of 0.1-2 wt %. The supramolecular gelators were composed of a long hydrophobic tail, amino acids and gluconic acid, which were prepared by liquid-phase synthesis. Among seven types of the gelators synthesized, the gelators containing L-Val, L-Leu, and L-Ile exhibited high gelation ability to various solvents. These gelators were soluble in aqueous and organic solvents, and also in ionic liquids at high temperature. The gelation of these solvents was thermally reversible. The microscopic observations (TEM, SEM, and CLSM) and small-angle X-ray scattering (SAXS) measurements suggested that the gelator molecules self-assembled to form entangled nanofibers in a large variety of solvents, resulting in the gelation of these solvents. Molecular mechanics and density functional theory (DFT) calculations indicated the possible molecular packing of the gelator in the nanofibers. Interestingly, the gelation of an ionic liquid by our gelator did not affect the ionic conductivity of the ionic liquid, which would provide an advantage to electrochemical applications.  相似文献   

19.
Four new chiral bis(amino alcohol)oxalamides (1-4: amino alcohol=leucinol, valinol, phenylglycinol, and phenylalaninol, respectively) have been prepared as low-molecular-weight organic gelators. Their gelation properties towards various organic solvents and mixtures were determined and these were then compared to related bis(amino acid) oxalamide gelators. Spectroscopic (FTIR, (1)H NMR) and X-ray diffraction studies revealed that the primary organization motif of (S,S)-1 and racemate 1 (rac-1) in lipophilic solvents involved the formation of inverse bilayers. The X-ray crystal structure of (S,S)-1 also shows this type of bilayer organization. The crystal structure of rac-2 reveals meso bilayers of hydrogen-bonded aggregates. Within the bilayers formed, the gelator molecules are connected by cooperative hydrogen bonding between oxalamide units and OH groups, while the interbilayer interactions are realized through lipophilic interactions between the iBu groups of leucinol. Oxalamide meso-1 lacks any gelation ability and crystallizes in monolayers. In dichloromethane rac-1 forms an unstable gel; this is prone to crystallization as a result of the formation of symmetrical meso bilayers. In contrast, in aromatic solvents rac-1 forms stable gels; this indicates that enantiomeric bilayers are formed. Oxalamide rac-1 is capable of gelling a volume of toluene three times larger than (S,S)-1. A tranmission electron microscopy investigation of rac-1 and (S,S)-1 toluene gels reveals the presence of thinner fibers in the former gel, and, hence, a more compact network that is capable of immobilizing a larger volume of the solvent. The self-assembly of these types of gelator molecules into bilayers and subsequent formation of fibrous aggregates can be explained by considering the strength and direction of aggregate forces (supramolecular vectors) in three-dimensional space.  相似文献   

20.
合成并表征了一种含7-硝基苯并-2-氧杂-1,3-二唑基(7-Nitrobenzo-2-oxa-1,3-diazol-4-yl)的胆固醇衍生物(NBD-C), 考察了其在30种溶剂中的胶凝行为. 实验结果表明, NBD-C对乙腈具有很强的胶凝作用, 且该凝胶体系具有显著的剪切触变性. 对干凝胶的显微分析发现, 在不同溶剂中, NBD-C具有不同的聚集结构. 红外光谱(FTIR)、核磁共振光谱(1H NMR)和荧光光谱研究结果表明, 除了胆固醇的范德华堆积作用之外, 分子间氢键作用也是该化合物聚集的重要驱动力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号