首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
TiO2广泛用作半导体光催化材料, 但由于自身对光利用率低(只吸收紫外光)、禁带宽度较大、光生载流子复合率极高, 限制了它在相关领域的应用. 为此, 设计了Ti3+离子自掺杂来克服TiO2半导体材料的上述缺点, 进而提高其光催化活性. 在不引入其他元素的情况下, 以TiOF2为原料, Zn粉为还原剂, 在水热条件下采用拓扑相变法原位制备了具有可见光响应的Ti3+自掺杂空盒状TiO2(记为Ti3+/TiO2)催化剂材料. 掺杂金属离子可以改变半导体TiO2的结晶度和产生晶格缺陷, 形成电子或空穴的捕获中心, 影响电子-空穴对的复合; 同时, 掺杂金属离子产生的晶格缺陷有利于Ti3+和氧空位的形成, 有利于提高TiO2的量子效率. Ti3+掺杂是一种既清洁又未引入其他金属离子的掺杂改性方法, 它能有效保持催化剂的结构和形貌不受其他金属离子的影响. 总之, 金属离子掺杂有效拓展了TiO2的光吸收范围, 并极大地提高了TiO2的光催化活性.本文研究了不同量的还原剂对催化剂空盒状TiO2结构形貌影响, 以及在可见光下光催化降解罗丹明B反应性能, 发现Ti3+/TiO2催化剂均拥有非常好的光催化活性, 其中R0.25催化剂在可见光下120 min, RhB降解率达到96%, 是TiO2的4倍多. 且可循环使用5次的光催化循环降解实验后, 表现出较高的稳定性. 催化剂经过Ti3+自掺杂后, 对催化剂自身的空盒状结构形貌并无很大的影响, 随着还原剂Zn粉的量增加, Ti4+还原形成Ti3+数量增加, 导致形成更多的氧空位. 皆为锐钛矿型TiO2,与未掺杂Ti3+的TiO2比较发现, 自掺杂Ti3+的TiO2的(105)XRD衍射峰越来越尖锐, (004)衍射峰越来越宽. 随着还原剂Zn粉质量的逐渐增加, 催化剂的光响应范围拓宽到可见光区, 且逐渐增强. 这说明Ti3+的掺杂不仅提高了TiO2在可见光的响应能力, 也提高了TiO2在紫外光范围的响应能力. 另外, 掺杂后的TiO2禁带宽度的减小, 使其价带上的电子更容易被可见光激发, 产生更多的电子-空穴对参与光催化反应, 从而提高TiO2的光催化效率.  相似文献   

2.
以TiCl_3和InCl_3为Ti源和In源,在不使用还原剂的条件下,首先通过液相沉淀反应制备前驱体沉淀,然后采用后续水热处理制备Ti~(3+)自掺杂的TiO_2(A)/TiO_2(R)/In_2O_3纳米异质结,考察了水热处理温度对材料结构和性能的影响。利用X射线衍射、透射电子显微镜、X射线光电子能谱和紫外-可见漫反射光谱对样品进行表征。分别以罗丹明B和苯酚溶液为模拟废水评价了样品的可见光催化降解性能。结果表明,与纯的TiO_2、In2O_3以及Ti~(3+)自掺杂的TiO_2相比,Ti~(3+)自掺杂的TiO_2(A)/TiO_2(R)/In_2O_3纳米异质结在可见光区有明显的吸收,并具有良好的可见光催化降解性能,200℃下水热处理24h所得样品光催化降解罗丹明B的反应速率常数(0.0444min-1)分别是纯TiO_2和In_2O_3的17.76倍和8.71倍。瞬态光电流时间响应结果表明样品的光催化性能主要来源于TiO_2(A)/TiO_2(R)/In_2O_3纳米异质结导致的提高的光生电子和空穴分离效率。  相似文献   

3.
利用吸附相反应技术耦合溶剂热处理过程,制备了可见光响应的La和Yb掺杂的TiO_2-还原石墨烯催化剂。结构表征和模拟海水中的苯酚光降解实验表明,吸附相反应制备后掺杂的稀土离子分散于TiO_2晶格结构中,促进了TiO_2从锐钛矿到金红石的转变从而形成混晶结构,并在催化剂中引入了少量Ti~(3+)离子。而Ti~(3+)的自掺杂作用可以显著提升催化剂的可见光响应和可见光催化活性,光降解5 h后对模拟海水中苯酚最高去除率在80%以上。可见光催化活性的大小是由催化剂中Ti~(3+)含量决定的,掺杂引入的混晶结构越多, Ti~(3+)含量越高,因而催化剂的可见光降解活性也越高。过多稀土离子会聚集在锐钛矿周围抑制晶型转变,减少了催化剂中的Ti~(3+)含量,也降低了催化剂可见光降解活性。  相似文献   

4.
作为一种稳定、价廉的光催化剂,TiO_2被广泛应用于各种污染物的降解;但是,较大的宽禁带(~3.2 eV)和较低的电子迁移率不仅使TiO_2很难吸收可见光,而且光生电子和空穴的复合几率高,从而导致TiO_2的总体光电效率不高.因此,设计能够被可见光激发、并具有快速光生电子传输的TiO_2一直是研究热点.研究表明,Ti~(3+)自掺杂的TiO_2(还原态TiO_(2-x))不仅能够被可见光激发,而且使TiO_2具有良好的电子导电性,从而有利于提高TiO_2的光电转换效率.另外,非金属元素的掺杂能够减小TiO_2的禁带宽度,使TiO_2能够响应可见光并具有良好的可见光催化性能,其中S元素的掺杂被广泛研究.目前,S掺杂纳米TiO_2的制备通常采用TiS2,单质S,硫脲、二甲亚砜等为S源,但这类原料通常价格昂贵或者具有一定的毒性,因而实际应用受到限制.而制备Ti~(3+)自掺杂TiO_2的方法大都是基于"还原法",在真空或强还原性气氛如H_2,CO中加热TiO_2,或采用高能粒子(电子、氩离子)轰击.在实际应用中,这些方法存在步骤多、条件苛刻、反应时间长和设备昂贵等不足.而且,还原法反应通常发生在颗粒的表面,形成的Ti~(3+)很容易被空气和水中的溶解O2氧化,降低材料的稳定性.虽然在温和的液相中还原Ti4+可用于制备Ti~(3+)掺杂的TiO_2,但是由于反应过程中有副产物生成,需要进行后续处理才能得到纯的Ti~(3+)自掺杂TiO_2.因此,设计一种简单的制备S掺杂还原态TiO_(2-x)光催化剂仍具有十分重要的意义.前期我们采用H_2O_2氧化TiH_2得到不同状态的前驱体凝胶,然后进行不同方式的后处理得到Ti~(3+)自掺杂的纳米TiO_2.本文以TiH_2和H_2O_2反应得到的黄色前驱体凝胶为Ti源,以价格低廉、无毒、稳定的二氧化硫脲为S源和还原剂,采用不同的方法制备了S掺杂的还原态TiO_(2-x)光催化剂.本文初步研究了在凝胶中加入二氧化硫脲后进行水热处理,以及将干燥的凝胶粉末与二氧化硫脲混合热处理对所得产物的影响.并与纯的TiO_2、还原态TiO_(2-x)和S掺杂TiO_2的光吸收、电化学、光催化性能进行对比研究.采用X射线衍射、透射电子显微镜、高分辨透射电子显微镜、X-射线光电子能谱、紫外-可见漫反射光谱、比表面分析和电化学工作站等技术对产物的结构、形貌和光电性能进行了表征.以罗丹明B(RhB)溶液为模拟废水,考察样品的可见光催化性能.结果表明,不同的后续处理方式不仅影响S掺杂TiO_(2-x)的结晶性和形貌,而且影响产物的光吸收性能和电子传输性能,从而使不同条件下所得产物的可见光催化性能不同.其中,采用热处理方式得到的S掺杂TiO_(2-x)样品在可见光下降解RhB的速率分别是纯的TiO_2,TiO_(2-x)和S掺杂TiO_2的31,2.5和3.6倍,而且样品具有良好的循环稳定性.  相似文献   

5.
通过在锐钛矿TiO_2载体表面上负载Cu-BTC(BTC,1,3,5-苯甲酸)前驱体,还原处理制备光催化剂CuO-Ti~(3+)/TiO_2(Cu-TiMB),对其在可见光条件下气相甲苯净化催化性能进行了研究。结果表明,该改良方法制备的CuO-Ti~(3+)/TiO_2(CuTiM B)催化剂的活性是浸渍法所得催化剂CuO-TiO_2(Cu-TiD)的2.68倍。CuO-Ti~(3+)/TiO_2(Cu-TiMB)具有更大的比表面积(147 m2/g)和较小的颗粒粒径(0.45μm),呈现多孔状,CuO的分散度较高;催化剂表面Ti~(3+)提供了大量的氧缺位,在400-800 nm波段的光响应能力显著增强。CuO-Ti~(3+)/TiO_2(Cu-TiMB)催化剂中Cu~(2+)、Cu~+与Ti~(3+)形成的异质结构进一步增多了氧缺位数量,延缓e--h+的复合时间;氧缺陷增强了捕获吸附氧能力,通过金属氧化物价态变化增强化学吸附能力,提高了光催化性能。  相似文献   

6.
为了提高TiO_2的光催化活性,优化球磨工艺,采用球磨法制备稀土金属Tm掺杂TiO_2光催化剂,在300W中压汞灯光照下,对模拟染料亚甲基蓝(MB)溶液进行降解,考察稀土金属Tm以离子态或氧化物掺杂TiO_2的光催化活性,探究球磨中掺杂比、球料比对TiO_2光催化活性的影响,并用XRD、UV-vis DRS、SEM-EDS等对催化剂进行表征。结果表明,Tm~~(3+)的存在可以诱导TiO_2产生晶格畸变,Tm~2O_3/TiO_2和Tm~~(3+)/TiO_2对可见光产生响应,禁带宽度分别降低至2. 97 eV和3. 05 eV。当催化剂投入量为0. 2 g·L~(-1),亚甲基蓝(MB)溶液浓度为25 mg·L~(-1),Tm~~(3+)/TiO_2和Tm~2O_3/TiO_2的最佳掺杂比分别为2. 5%和3%、球料比为4:1、球磨转速为500rpm时,Tm~~(3+)/TiO_2、Tm~2O_3/TiO_2和纯TiO_2的一级反应速率常数分别可达0. 0689 min~(-1)、0. 0562 min~(-1)和0. 0263min~(-1)。  相似文献   

7.
半导体光催化剂TiO2因具有绿色环保无污染、化学稳定性好及可实现稳定产氢等优点而广泛应用于光解水、废水处理和空气净化等领域.然而,锐钛矿相TiO2禁带宽度约为3.2 eV,仅对紫外光响应.而在太阳光中,44%左右为可见光,紫外光仅占不到4%.为了提高TiO2对太阳光的利用率和在可见光照射下的光催化活性,近年来人们采用掺杂金属/非金属离子以及与可见光催化剂复合等方法对TiO2进行改性.但是这些离子掺杂的方法会不可避免地在TiO2晶格中形成结构缺陷,这些结构缺陷作为光生电子和空穴的复合中心不利于电子和空穴分离.最近研究表明,通过Ti3+自掺杂可以很好提高TiO2可见光催化活性,但是目前制备Ti3+掺杂TiO2的方法较复杂,形成的Ti3+掺杂易在表面积聚而被进一步氧化,影响其光催化稳定性,不利于实际应用.因此,开发具有良好电子-空穴分离效率的可见光催化剂引起了广泛的研究兴趣.本文通过原位自掺杂Ti3+来提高TiO2可见光光催化活性.以TiCl3为钛源, H2O为溶剂, F127为软模板,采用溶剂挥发诱导自组装的方法制备了蠕虫状Ti3+自掺杂的介孔TiO2.采用X射线衍射(XRD)、N2物理吸附、紫外-可见漫反射(UV-vis)、透射电子显微镜和电子顺磁共振(EPR)对所制备样品结构、结晶度和形貌等进行了表征分析.通过控制表面活性剂用量和焙烧温度优化了Ti3+自掺杂介孔TiO2的光催化活性.结果表明,在模拟太阳光照射下,所制样品对气相光催化氧化NO和水相降解有机染料亚甲基蓝表现出优异的催化性能和稳定性. Ti3+自掺杂介孔TiO2有效扩展了催化剂的光吸收范围,提高了光生电子空穴的迁移效率.其优异的光催化活性和稳定性主要归因于掺杂在TiO2骨架中的Ti3+和所合成催化剂多孔性之间的协同效果.固体UV-vis结果表明,所合成的TiO2具有很好的可见光响应,主要归因于在TiO2材料合成过程中,部分Ti3+未被完全氧化, Ti3+掺入可以有效降低TiO2的禁带宽度.通过计算可知合成的TiO2禁带宽度为2.7 eV.通过低温EPR测试进一步证明了Ti3+的存在,而且Ti3+主要掺杂在TiO2体相中. N2物理吸附结果表明,随焙烧温度不断提高,所得产物的比表面积先增加后减少,当焙烧温度在500 oC时,比表面积最大,但至550 oC时,比表面积、孔径和孔体积增大,表明催化剂的孔结构被破坏.表面活性剂F127的用量对样品比表面积和孔径大小也有影响,当其用量为0.54 g时,所得产物的比表面积最大.我们将所合成的TiO2应用于污染气体NO的氧化,考察了焙烧温度和表面活性剂用量对光催化剂性能的影响.结果表明,当表面活性剂用量为0.54 g,焙烧温度为500oC时,所制催化剂在模拟太阳光和可见光照射下都表现出最好的NO去除转化率.将使用过的催化剂离心洗涤后进行连续反应3.5 h,依然保持很高的NO去除转化率.催化剂高活性及稳定性的主要原因是Ti3+的掺杂将TiO2光响应范围拓展到可见光区域,且Ti3+掺杂和介孔结构之间的协同作用有利于促进光生电子和空穴的分离.当催化剂在低于500 oC焙烧时,所得催化剂结晶度较低,不利于光生电子-空穴的分离,而高温焙烧则会导致催化剂介孔结构遭到破坏,不利于NO气体吸附和产物脱附.表面活性剂对催化剂活性影响较小,在可见光照射下催化剂均表现出很好的光催化活性.此外,该Ti3+自掺杂介孔TiO2在液相条件下对有机染料亚甲基蓝也表现出很好的去除效果,可见光照射2 h,亚甲基蓝去除率接近100%.  相似文献   

8.
半导体光催化剂Ti O2因具有绿色环保无污染、化学稳定性好及可实现稳定产氢等优点而广泛应用于光解水、废水处理和空气净化等领域.然而,锐钛矿相Ti O2禁带宽度约为3.2 e V,仅对紫外光响应.而在太阳光中,44%左右为可见光,紫外光仅占不到4%.为了提高Ti O2对太阳光的利用率和在可见光照射下的光催化活性,近年来人们采用掺杂金属/非金属离子以及与可见光催化剂复合等方法对Ti O2进行改性.但是这些离子掺杂的方法会不可避免地在Ti O2晶格中形成结构缺陷,这些结构缺陷作为光生电子和空穴的复合中心不利于电子和空穴分离.最近研究表明,通过Ti3+自掺杂可以很好提高Ti O2可见光催化活性,但是目前制备Ti3+掺杂Ti O2的方法较复杂,形成的Ti3+掺杂易在表面积聚而被进一步氧化,影响其光催化稳定性,不利于实际应用.因此,开发具有良好电子-空穴分离效率的可见光催化剂引起了广泛的研究兴趣.本文通过原位自掺杂Ti3+来提高Ti O2可见光光催化活性.以Ti Cl3为钛源,H2O为溶剂,F127为软模板,采用溶剂挥发诱导自组装的方法制备了蠕虫状Ti3+自掺杂的介孔Ti O2.采用X射线衍射(XRD)、N2物理吸附、紫外-可见漫反射(UV-vis)、透射电子显微镜和电子顺磁共振(EPR)对所制备样品结构、结晶度和形貌等进行了表征分析.通过控制表面活性剂用量和焙烧温度优化了Ti3+自掺杂介孔Ti O2的光催化活性.结果表明,在模拟太阳光照射下,所制样品对气相光催化氧化NO和水相降解有机染料亚甲基蓝表现出优异的催化性能和稳定性.Ti3+自掺杂介孔Ti O2有效扩展了催化剂的光吸收范围,提高了光生电子空穴的迁移效率.其优异的光催化活性和稳定性主要归因于掺杂在Ti O+2骨架中的Ti3和所合成催化剂多孔性之间的协同效果.固体UV-vis结果表明,所合成的Ti O+2具有很好的可见光响应,主要归因于在Ti O2材料合成过程中,部分Ti3+未被完全氧化,Ti3掺入可以有效降低Ti O2的禁带宽度.通过计算可知合成的Ti O2禁带宽度为2.7 e V.通过低温EPR测试进一步证明了Ti3+的存在,而且Ti3+主要掺杂在Ti O2体相中.N2物理吸附结果表明,随焙烧温度不断提高,所得产物的比表面积先增加后减少,当焙烧温度在500 oC时,比表面积最大,但至550 oC时,比表面积、孔径和孔体积增大,表明催化剂的孔结构被破坏.表面活性剂F127的用量对样品比表面积和孔径大小也有影响,当其用量为0.54 g时,所得产物的比表面积最大.我们将所合成的Ti O2应用于污染气体NO的氧化,考察了焙烧温度和表面活性剂用量对光催化剂性能的影响.结果表明,当表面活性剂用量为0.54 g,焙烧温度为500 oC时,所制催化剂在模拟太阳光和可见光照射下都表现出最好的NO去除转化率.将使用过的催化剂离心洗涤后进行连续反应3.5 h,依然保持很高的NO去除转化率.催化剂高活性及稳定性的主要原因是Ti3+的掺杂将Ti O2光响应范围拓展到可见光区域,且Ti3+掺杂和介孔结构之间的协同作用有利于促进光生电子和空穴的分离.当催化剂在低于500 oC焙烧时,所得催化剂结晶度较低,不利于光生电子-空穴的分离,而高温焙烧则会导致催化剂介孔结构遭到破坏,不利于NO气体吸附和产物脱附.表面活性剂对催化剂活性影响较小,在可见光照射下催化剂均表现出很好的光催化活性.此外,该Ti3+自掺杂介孔Ti O2在液相条件下对有机染料亚甲基蓝也表现出很好的去除效果,可见光照射2 h,亚甲基蓝去除率接近100%.  相似文献   

9.
以电纺TiO_2纳米纤维为基质,采用溶剂热法制备了稀土Pr掺杂Bi_2MoO_6/TiO_2复合纳米纤维,利用X射线衍射仪、扫描电子显微镜、透射电子显微镜、紫外-可见-近红外分光光度计和荧光光谱仪等对不同样品的物相、形貌和光学性能等进行表征,以甲基橙为模拟有机污染物,考察了样品的光催化性能.结果表明,在复合样品中,Pr~(3+)进入Bi_2MoO_6晶格,部分取代Bi~(3+)形成施主能级,导致能级带隙变窄,不仅有利于提高样品的可见光催化活性,抑制光生电子-空穴对复合,而且还提高了Bi_2MoO_6/TiO_2的光催化活性和稳定性.当Pr的掺杂量为3%(摩尔分数)时,光催化降解甲基橙的效果最佳,可见光照射180 min时降解率达到93.8%,比纯Bi_2MoO_6/TiO_2的降解率有明显提高.  相似文献   

10.
随着工业化的快速发展,化石燃料等不可再生能源的快速消耗,人类将面临不可预测的能源危机.寻找有效的方法来解决能源短缺问题已成为当今的重要研究课题.氢能是一种可以替代化石燃料的清洁可再生能源.利用半导体光催化分解水制氢技术可以将太阳能转化为氢能.目前,在已开发的半导体光催化材料中, TiO_2因具有无毒、稳定、廉价等优点而备受光催化领域关注.但是,在实际应用方面, TiO_2的光催化效率受限于其低的光子利用率和较高的光生电子-空穴复合率.许多研究表明, TiO_2不同晶面的协同作用有利于光生载流子的迁移分离,并且适量的掺杂能够捕获光生电子,从而抑制其复合.而镧系元素因其特殊4f电子结构受到广泛的关注.采用物理或化学方法将镧系离子引入TiO_2晶格中,可以影响光生电子和空穴的动力学过程,延长光生载流子的分离状态,从而提高光催化活性.本文通过简单溶剂热法成功合成了镧系离子掺杂{001}/{101}面共暴露的TiO_2纳米片.X-射线粉末衍射(XRD)、X-射线光电子能谱(XPS)和高分辨透射电子显微镜(HRTEM)的表征结果证明了镧系离子选择性掺杂在TiO_2纳米片{101}面上.结合紫外可见吸收光谱、稳态荧光、瞬态荧光衰减曲线、光电流及莫特-肖特基曲线等手段对镧系离子掺杂TiO_2光催化剂进行了表征,结果表明,镧系离子掺杂TiO_2纳米片增强了对光的吸收,同时延长光生载流子的分离状态,阻碍光生电子和空穴的复合.考察其光催化分解水制氢的性能.研究表明,在相同掺杂量(0.5 mol%RE~(3+)=Ho~(3+), Er~(3+), Tm~(3+), Yb~(3+), Lu~(3+))的TiO_2纳米片中, Yb~(3+)-TiO_2纳米片光催化剂具有优异的产氢活性,在模拟太阳光照射1 h后产氢量是纯TiO_2的4.25倍.同时讨论了不同浓度助催化剂Pt作用下的Yb~(3+)-TiO_2纳米片产氢效果,当Pt含量量为0.3wt%时,光解水产氢活性最佳, Pt/Yb~(3+)-TiO_2纳米片的产氢量是Yb~(3+)-TiO_2的2倍,纯TiO_2的8.5倍.光催化分解水产氢活性的显著提高可以归因于光生电子-空穴对在TiO_2纳米片{001}/{101}面的快速分离,以及镧系离子4f电子轨道对电子的捕获和杂质能级的产生减小了禁带宽度,这不仅延长了光生载流子的分离状态,增加了H~+还原成H_2的机会,而且还可以拓展可见光的吸收范围.可见,利用镧系离子掺杂TiO_2和共暴露{001}/{101}面协同作用是一种实现TiO_2基光催化活性提高的有效方法之一.镧系离子掺杂的策略对提高半导体纳米材料的光催化活性有显著的影响,可能在光催化、光电化学和太阳能电池领域有更广泛的应用.  相似文献   

11.
采用溶胶-超声辐照技术同步合成了生物质C-N-P自掺杂TiO_2复合催化剂,通过X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电子显微镜(FESEM)、紫外-可见漫反射光谱(UV-Vis-DRS)及光致发光光谱(PL)对样品进行了表征.以亚甲基兰(MB)为目标污染物,研究了C-N-P共掺杂TiO_2的可见光光催化性能.实验结果表明,在可见光照射下,光催化反应时间为2 h时,C-N-P共掺杂TiO_2复合催化剂对亚甲基兰的降解效率最高可达9 8.5%;相比纯TiO_2,C-N-P共掺杂TiO_2复合催化剂的比表面积增大,吸收边带红移,禁带宽度减小,相变温度升高,光生载流子复合率降低.  相似文献   

12.
孙杰  孙鹤  孙文彦 《无机化学学报》2014,30(10):2308-2314
采用水合肼(N2H4·H2O)作为还原剂,在液相环境中制备了自掺杂TiO2纳米管阵列(NTs)。利用FE-SEM、EDS、XPS、XRD、Raman、UV-Vis/NIR分光光度法以及半导体特性分析系统(Keithley 4200 SCS)分别对样品的形貌,晶体结构,光学特性以及电学性能进行了表征。结果表明:通过这种方法制备的自掺杂TiO2NTs在带隙中引入了大量的氧空位,创造了氧空位能级,从而提高了样品的电导率,有效提高光生电子-空穴对的产生、分离和传输。此外,由于氧空位的作用,使得TiO2NTs的带隙变窄,增强了可见光吸收能力,致使样品具有较高的光催化活性,并通过降解甲基橙溶液对样品的光催化活性进行评估。结果显示当光照150 min后,自掺杂TiO2NTs对甲基橙溶液的降解率达73%,并且这种催化剂便于回收和重复使用。  相似文献   

13.
为了改善TiO_2光催化剂光生电子-空穴对复合率高、太阳光利用率低的缺陷,采用溶剂热法控制氧化剥离的少层Ti_3C_2MXene(DL-Ti_3C_2),制备TiO_2/DL-Ti_3C_2复合光催化剂,并通过降解罗丹明B溶液,研究其光催化性能。结果表明,TiO_2/DL-Ti_3C_2复合光催化剂能有效吸收可见光,且光催化性能明显优于DL-Ti_3C_2和P25。当溶剂热氧化温度为160℃时,复合材料具有最佳的光催化性能。当氧化温度过低时,催化剂中形成的TiO_2量不足,产生的光生电子-空穴对数量较少,导致催化剂性能较差;当氧化温度过高时,DL-Ti_3C_2减少,降低了材料导电性,光生电子-空穴对复合效率高,导致催化剂性能变差。因此,通过改变DL-Ti_3C_2的氧化温度,可以调控TiO_2/DL-Ti_3C_2复合材料中TiO_2和DL-Ti_3C_2的相对含量,使二者产生协同作用提高复合光催化剂的可见光催化活性。  相似文献   

14.
随着抗生素废水在水体和陆地生态系统的肆意排放,抗生素污染已成为当今世界重要的环境问题.由于抗生素废水具有生物毒性大、含有抑菌物质等特点,传统的物理吸附法、生物处理法在处理这类难降解有毒有机废水,尤其是含残留微量抗生素的废水时效果较差.为了解决抗生素废水所引起的环境危机,人们尝试了许多方法.近年来,光催化技术作为一种适用范围广、反应速率快、氧化能力强、无污染或少污染的处理抗生素废水的方法受到人们广泛关注.半导体材料在太阳光照射下,可产生具有较强氧化作用的羟基或超氧自由基,从而起到降解抗生素分子的作用.然而,传统的光催化处理抗生素废水光催化剂主要局限于TiO_2半导体,它存在太阳光谱吸收范围窄、光生电荷复合率高等问题,严重制约其工业化应用.因此,人们一直致力于开发高效、稳定的可见光响应型光催化剂.本文根据光催化技术的基本原理,综述了目前几种基于不同策略设计开发可见光光催化降解抗生素废水的新型光催化剂的方法.离子掺杂改性宽带隙半导体是开发高效可见光光催化剂的常用方法.通过过渡金属离子或非金属离子掺杂改性,可以使传统的TiO_2和SrTiO_3等紫外光催化剂吸收带边发生红移,响应可见光,从而显著提高可见光下光催化剂降解抗生素的效率.然而必须注意的是,掺杂的金属离子本身会成为电子-空穴复合点位,因此,过量的掺杂金属或非金属离子可能会降低其光催化活性.考虑到单一半导体材料在光催化反应中存在的光生载流子容易复合、可见光利用率低等问题,构建异质结构复合光催化体系,通过不同半导体之间的协同作用,促进光生电荷的分离与转移,是获得高效光催化体系的重要策略之一.典型的Ⅱ型异质结光催化剂,当不同的半导体紧密接触时,由于异质结两侧能带等性质的不同会形成空间电势差,从而有利于光生载流子的分离,光催化效率提高.作为一种复合光催化体系,表面等离子体共振增强型光催化体系近年来引起了国内外学者的广泛关注.Ag,Au和Pd金属纳米粒子在吸收光后其表面发生等离共振,随后等离子体发生衰减,把聚集的能量转移到半导体材料的导带.这个过程产生的高能电子(热电子),逃离贵金属纳米粒子而被与其接触的半导体收集,从而形成金属-半导体肖特基接触.形成的肖特基结可以显著提高光催化的光生电荷分离效率,从而提高光催化降解抗生素活性.目前,与传统物化法/生化法相比,光催化技术用于处理抗生素废水具有十分明显的技术优势,在水处理方面有着很好的应用前景.针对目前光催化体系存在的光生载流子容易复合的巨大挑战,今后,构筑高效复合光催化体系(例如石墨烯基二维复合光催化剂在光生电荷分离、太阳光利用率等方面已展现出较好的综合性能)将成为高效光催化降解抗生素催化剂研发的重要方向之一.  相似文献   

15.
采用溶-胶凝胶及水热法制备了铁掺杂的纳米TiO_2光催化材料.采用X射线衍射、X光电子能谱和紫外-可见漫反射等方法对铁掺杂的纳米TiO_2光催化材料进行了表征.以三氯乙烯作为目标污染物,研究了铁掺杂的二氧化钛的光催化性能.结果表明,Fe-TiO_2对光的吸收拓展到可见光范围内,铁掺杂后TiO_2催化剂有更多的表面羟基,这些表面羟基的存在有利于有机物在催化剂表面的吸附,同时还能捕获光生空穴形成·OH氧化有机污染物.适量Fe掺杂有利于提高TiO_2光催化性能.  相似文献   

16.
二氧化钛基Z型光催化剂综述(英文)   总被引:1,自引:0,他引:1  
TiO_2具有无毒、耐腐蚀、高稳定和低成本等特点,已被广泛应用于光催化领域.然而,TiO_2的禁带较宽,只能吸收仅占太阳光4%的紫外光部分,从而严重限制了TiO_2光催化材料对太阳光的有效应用.目前很多方法被用来提高TiO_2光催化效率,如金属/非金属掺杂、贵金属负载、异质结构建和与碳材料复合等,这些策略在提高光催化剂的光催化效率中,涉及到如何兼顾太阳光利用和光生空穴和电子氧化还原能力两者之间的平衡.通常,半导体禁带宽度越窄,半导体的光谱响应范围越宽、太阳光利用越多,但光生空穴和电子氧化还原能力越弱.因此,想要提高TiO_2的光催化性能,应考虑以下两个方面的平衡:即降低带隙宽度,拓展半导体的光谱响应范围;与之同时使价带电位更正,导带电位更负之间的平衡.然而,这两个点是相互矛盾的,因此很难在单组分光催化剂中同时实现这两点.然而,Z型光催化剂可以同时满足这两点要求,即:降低半导体的带隙,同时使导带更负,价带更正,因为Z光催化系统利用了两种半导体的优势,其电荷转移机制类似于自然界中绿色植物的光合作用,其中的载流子传输途径包括两步激发,类似于英文字母"Z",Z型光催化剂因此而得名.Z型光催化剂既能保留较高还原能力的光生电子和又能保留较高氧化能力的光生空穴,由于Z型光催化剂特有的优点,在光催化领域的应用越来越广泛.本文综述了TiO_2基Z型光催化剂的最新研究进展,其中包括:Z型光催化机理、应用范围和光催化活性改进方法.Z型光催化剂分为传统液相Z型光催化体系,全固态Z型光催化体系,以及最近几年发展起来的直接Z型光催化体系.它们的主要应用包括:光催化分解水产氢、二氧化碳还原制备太阳燃料、有机污染物光催化降解.论文进一步讨论了提高TiO_2基Z型光催化剂性能的方法,包括pH值调控、电子导体选择、助催化剂使用、掺杂改性、组织形貌控制、两种半导体质量比优化等.最后,提出了TiO_2基Z型光催化剂今后面临的挑战和发展前景展望.  相似文献   

17.
TiO_2光催化剂具有无毒、物理化学性质稳定及光催化活性较高等优点,因而在能源及环境净化等领域备受关注.但是,TiO_2纳米颗粒作为催化剂仍存在以下不足:(1)TiO_2带隙较宽,只能吸收利用太阳光能的紫外光部分,而照射到地球表面的太阳光大部分为可见光;(2)光生载流子(电子/空穴)的复合使得光催化活性不高;(3)纳米催化剂的回收利用困难;(4)单独使用TiO_2,成本较高;(5)针对低浓度有机污染,常见TiO_2催化剂比表面积较小,吸附富集能力较差,导致光催化降解效率较低.TiO_2自身这些缺陷大大限制了其进一步的实际应用.针对上述这些问题,我们在本研究中设计了一种简便易行的溶胶凝胶法,在较低的温度(70℃)下合成了非金属C-Cl共掺杂的TiO_2/凹凸棒(TiO_2/ATT)复合催化剂.XRD及HRTEM分析证明,通过调节反应溶液的pH可以分别合成含锐钛矿/金红石、锐钛矿/金红石/板钛矿的两相和三相的混合相TiO_2,且锐钛矿/金红石比例可以通过改变pH而进行调节.XPS分析证明,C和C1同时成功掺进TiO_2/ATT复合催化剂.UV-Vis漫反射结果显示,非金属C和C1的掺杂使得所合成复合催化剂的光吸收性能明显拓展到可见光区,因而可以充分利用可见光能进行有机污染物催化降解,而ATT作为TiO_2的载体,减少了TiO_2使用量,改善了TiO_2的表面特性和孔结构,且有利于光催化剂的回收利用.以酸性红G为目标有机污染物,在可见光照射下对复合催化剂的可见光催化活性进行了测试.结果表明,当合成反应体系的pH值为3.0时,所获得的锐钛矿/金红石/板钛矿三相TiO_2/ATT复合催化剂具有良好的可见光吸收特性,其可见光催化活性远远高于市售P25型TiO_2,对难降解的酸性红溶液G具有优异的脱色效果和良好的TOC去除性能.循环光催化实验和FTIR表征结果表明,在5次循环利用后,TiO_2/ATT复合催化剂仍表现出很高的催化活性,表明其稳定性优异.荧光分析和自由基捕获实验表明,光催化降解反应中的主要活性物种是羟基自由基、空穴和超氧自由基.TiO_2/ATT复合催化剂高效稳定的可见光催化性能主要归因于:(1)非金属C和Cl的共掺杂改善了其可见光吸收性能;(2)催化剂中的TiO_2由金红石、锐钛矿和板钛矿混合相组成,有利于抑制光生载流子的复合;(3)多孔结构的ATT作为载体提高了TiO_2的比表面积,增加了反应活性位,同时改善了孔结构,从而有利于模拟有机污染物(酸性红G)分子的吸附和降解,有利于反应产物扩散,从而提高了催化剂的可见光催化效率.  相似文献   

18.
以电纺TiO_2纳米纤维为基质,利用水热法制备了异质结型Eu~(3+)掺杂NaBi(MoO_4)_2/TiO_2复合纤维。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、 X射线光电子能谱(XPS)、高分辨透射电镜(TEM)、紫外-可见漫反射(UV-Vis DRS)光谱以及荧光(PL)光谱等分析测试手段对样品的物相、形貌和光学性能等进行表征。以三乙醇胺为电子给体,研究了Eu~(3+)掺杂NaBi(MoO_4)_2/TiO_2复合纤维光催化裂解水制氢的反应过程。结果表明:NaBi(MoO_4)_2与TiO_2复合形成异质结,使光生电子-空穴对得到较好分离,而Eu~(3+)掺杂进入NaBi(MoO_4)_2晶格,部分取代Bi~(3+)离子,导致晶胞膨胀,在拓宽光谱响应范围的同时,形成光生载流子的浅势捕获阱,进一步促进了光生电荷的产生、转移,有效提高材料的光催化制氢活性。最佳产氢速率达到7.86 mmol·h~(-1)·g~(-1)。  相似文献   

19.
通过微乳液法制备了Fe掺杂钙钛矿型KMgF_3光催化剂,运用扫描电子显微观察(SEM)、X射线衍射光谱(XRD)、紫外可见漫反射光谱(UV-Vis DRS)、光致发光光谱(PL spectra)、X射线光电子能谱(XPS)等对催化剂形貌、结构及理化特性等进行表征。考察了制备材料对水体中罗丹明B和甲基橙的光降解性能和其稳定性。结果表明,Fe~(3+)通过取代Mg~(2+)掺杂进入KMgF_3晶格形成均质固溶体,抑制晶粒长大和团聚的同时形成新的掺杂能级和浅电子陷阱,显著改善催化剂的光谱响应和抑制催化剂表面光生电子和空穴的复合。最适Fe~(3+)掺杂量为Mg~(2+)的1/4(摩尔分数),掺杂催化剂对水体罗丹明B、甲基橙的降解率30min内分别可达92%、91%,相比未掺杂的催化剂,降解率分别显著提升了约63%、68%。经5次光降解实验循环后,掺杂催化剂活性仍可保持新鲜催化剂的90%以上。  相似文献   

20.
TiO_2因其毒性低、稳定性高、制备成本低廉而获得广泛应用,特别是作为光催化剂在降解环境污染物方面受到了广泛关注;然而,纯TiO_2较大的光生载流子复合率和较宽的带隙限制了其应用.元素掺杂作为一种拓宽光催化剂光吸收能力的方法广泛应用于各种光催化剂的修饰改性,而两种具有光催化性能的TiO_2相共存则能有效抑制光生载流子的复合,因此采取合适的方法有效利用这两种TiO_2改性的方法制备得到更具实际应用潜质的光催化剂具有一定的可行性.本文通过简单的溶胶-凝胶过程向锐钛矿相与金红石相组成的混相TiO_2中共掺杂碳和钇得到了一种活性较高的可见光响应光催化剂.采用粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电镜等表征手段研究了碳和钇掺杂对TiO_2结构的影响,发现碳掺杂有利于金红石相的形成且材料具有更大的晶粒尺寸,钇掺杂则有利于锐钛矿相的形成且能细化材料的晶粒尺寸,提高材料的比表面积,导致材料更好的光催化活性.材料在30 W荧光灯光照条件下的光催化降解亚甲基蓝(MB)性能的研究显示,C-Y-TiO_2样品具有比单掺杂和未掺杂样品更高的光催化活性,其顺序为C-Y-TiO_2Y-TiO_2C-TiO_2TiO_2≈P25.此外,降解反应动力学研究表明C-Y-TiO_2样品光降解MB的速率是未掺杂样品在相同条件下降解速率的3.5倍.不同钇掺杂含量样品的结构和光催化降解MB的研究结果表明,钇掺杂显著促进了锐钛矿相TiO_2的形成.这说明钇可能仅掺杂进入锐钛矿相,因此合适的钇掺杂量才能有效形成最优化的光催化性能的混相TiO_2.不同热处理温度下获得的样品的光降解MB特性也表明,一定的热处理温度有利于合适的锐钛矿相和金红石相的组成,从而有利于相间的协同效应.紫外-可见光谱和荧光光谱表征分析表明,碳和钇的掺杂都拓展了其吸收光谱到可见光区域,且抑制了光生电子和空穴对的复合,进而提高了材料的光催化活性.碳和钇共掺杂的混相TiO_2具有较高可见光光催化活性的主要原因有两个方面:一是元素掺杂减小了TiO_2的带隙使得材料具有可见光响应;二是金属和非金属元素在锐钛矿相与金红石相TiO_2中不同的掺杂特性形成的协同效应,抑制了光生电子和空穴的复合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号