首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
In this paper, Monte Carlo simulations are carried out for Zn cluster supported on a static Si (0 0 1) substrate to estimate the morphological evolution of self-catalysis growth of ZnO nanostructures. The tight-binding many-body potential and the Lennard–Jones potential are used to describe Zn–Zn and Zn–Si interactions, respectively. The dynamic processes of Zn cluster in the temperature field decomposing and wetting effects are visualized through the simulation. The Zn atomic aggregates that randomly disperse on the Si (0 0 1) substrate with different shapes, such as a dimer, trimer, multimer and atomic chain, would act as catalytic nucleation sites for the following growth of the ZnO nanostructure. This phenomenon provides a sound explanation for the formation of randomly orientated and diversified ZnO nanostructures on the Si (0 0 1) substrate.  相似文献   

2.
The high dislocation density (2×107/cm2 for a thickness of 7 μm) in CdTe(2 1 1)B on Ge(2 1 1) has become a roadblock for the technological exploitation of this material. We present a systematic study of in situ and post-growth annealing cycles aimed at reducing it. An etch pit density of 2×106/cm2 was achieved by optimizing the growth conditions and annealing the samples in situ. This finding was corroborated by high-resolution X-ray diffraction, atomic force microscopy, photoluminescence and ellipsometry measurements.  相似文献   

3.
The growth of GaN based structures on Si(1 1 0) substrates by molecular beam epitaxy using ammonia as the nitrogen precursor is reported. The structural, optical and electrical properties of such structures are assessed and are quite similar to the ones obtained on Si(1 1 1) in-spite of the very different substrate surface symmetry. A threading dislocation density of 3.7×109 cm−2 is evaluated by transmission electron microscopy, which is in the low range of typical densities obtained on up to 2 μm thick GaN structures grown on Si(1 1 1). To assess the potential of such structure for device realization, AlGaN/GaN high electron mobility transistor and InGaN/GaN light emitting diode heterostructures were grown and their properties are compared with the ones obtained on Si(1 1 1).  相似文献   

4.
We have prepared (1 1 1)-oriented Si layers on SiO2 (fused silica) substrates from amorphous-Si(a-Si)/Al or Al/a-Si stacked layers using an aluminum-induced crystallization (AIC) method. The X-ray diffraction (XRD) intensity from the (1 1 1) planes of Si was found to depend significantly on growth conditions such as the thicknesses of Si and Al, deposition order (a-Si/Al or Al/a-Si on SiO2), deposition technique (sputtering or vacuum evaporation) and exposure time of the Al layer to air before the deposition of Si. The crystal orientation of the Si layers was confirmed by θ−2θ, 2θ XRD and electron backscatter diffraction (EBSD). The photoresponse properties of semiconducting BaSi2 films formed on the (1 1 1)-oriented Si layers by the AIC method were measured at room temperature. Photocurrents were clearly observed for photon energies greater than 1.25 eV. The external quantum efficiencies of the BaSi2 were also evaluated.  相似文献   

5.
Using an AlInN intermediate layer, GaN was grown on (1 1 1)Si substrate by selective metalorganic vapor phase epitaxy. The variation of the surface morphology was investigated as a function of the In composition and thickness of the AlInN layer. It was found that the In composition in the AlInN layer was a function of the growth temperature and thickness. Because of the small band offset at the AlInN/Si hetero-interface, we have achieved a low series resistance of the order of 9 Ω (0.0036 Ω cm2) across the GaN/AlInN/AlN/Si layer structure.  相似文献   

6.
Epitaxial NiO (1 1 1) and NiO (1 0 0) films have been grown by atomic layer deposition on both MgO (1 0 0) and α-Al2O3 (0 0 l) substrates at temperatures as low as 200 °C by using bis(2,2,6,6-tetramethyl-3,5-heptanedionato)Ni(II) and water as precursors. The films grown on the MgO (1 0 0) substrate show the expected cube on cube growth while the NiO (1 1 1) films grow with a twin rotated 180° on the α-Al2O3 (0 0 l) substrate surface. The films had columnar microstructures on both substrate types. The single grains were running throughout the whole film thickness and were significantly smaller in the direction parallel to the surface. Thin NiO (1 1 1) films can be grown with high crystal quality with a FWHM of 0.02–0.05° in the rocking curve measurements.  相似文献   

7.
The segregation of Ga during the growth of Czochralski-Si crystals with Ge codoping was investigated. The effective segregation coefficient of Ga in Ga/Ge-codoped Si crystal growth was nearly constant over a wide Ge concentration range, even at high Ge concentrations of about 1021 cm−3. In contrast, the effective segregation coefficient increased at high B concentrations in Ga/B-codoped CZ-Si crystal growth. The segregation behavior of Ga in Ga/Ge- and Ga/B-codoped CZ-Si crystal growth was theoretically compared. The difference in the segregation coefficients of Ga as a function of the codoped impurity (Ge or B) between the two Si crystals was attributed to a difference in the excess enthalpy due to impurity incorporation into the Si crystal between Ga–Ge pairs and Ga–B pairs  相似文献   

8.
SnO2 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates at different substrate temperatures (500–800 °C) by metalorganic chemical vapor deposition (MOCVD). Structural, electrical and optical properties of the films have been investigated. The films deposited at 500 and 600 °C are epitaxial SnO2 films with orthorhombic columbite structure, and the HRTEM analysis shows a clear epitaxial relationship of columbite SnO2(1 0 0)||YSZ(1 0 0). The films deposited at 700 and 800 °C have mixed-phase structures of rutile and columbite SnO2. The carrier concentration of the films is in the range from 1.15×1019 to 2.68×1019 cm−3, and the resistivity is from 2.48×10−2 to 1.16×10−2 Ω cm. The absolute average transmittance of the films in the visible range exceeds 90%. The band gap of the obtained SnO2 films is about 3.75–3.87 eV.  相似文献   

9.
The hydride-vapour-phase-epitaxial (HVPE) growth of semi-polar (1 1 2¯ 2)GaN is attempted on a GaN template layer grown on a patterned (1 1 3) Si substrate. It is found that the chemical reaction between the GaN grown layer and the Si substrate during the growth is suppressed substantially by lowering the growth temperatures no higher than 900 °C. And the surface morphology is improved by decreasing the V/III ratio. It is shown that a 230-μm-thick (1 1 2¯ 2)GaN with smooth surface is obtained at a growth temperature of 870 °C with V/III of 14.  相似文献   

10.
Microstructures were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) in order to clarify the dislocation behavior in AlGaN layers HVPE-grown on a stripe-patterned sapphire (0 0 0 1) substrate. SEM observation revealed very clearly the growth process: if AlGaN starting to grow from the side-wall of patterned substrate develops, a poly-crystalline region is formed up to the top surface of thin film. When the growth from the upper side (terrace) of patterned substrate is predominant, AlGaN becomes a single-crystalline layer with a flat surface. Threading dislocations (TDs) generated from the interface to the terrace propagate upwards, inclining to the wing regions. They are scarcely merged with one another. The AlGaN layer on the patterned substrate with a wider groove has a smaller density of dislocation to be about 1×109 cm−2. There are four types of dislocations: (1) TDs inclining toward 〈1 1¯ 0 0〉 normal to their Burgers vector B; (2) TDs inclining toward 〈2 1¯ 1¯ 0〉 on their slip-plane; (3) TDs inclining largely or horizontal dislocations (HDs) along 〈2 1¯ 1¯ 0〉 and (4) roundly curved HDs lying on (0 0 0 1) plane. Some TDs change the direction of inclination, suggesting that internal stress changed intricately during the growth.  相似文献   

11.
F. Zhao  J. Ma  B. Weng  D. Li  G. Bi  A. Chen  J. Xu  Z. Shi 《Journal of Crystal Growth》2010,312(19):2695-2698
PbSe thin film was grown on a patterned Si substrate with (1 1 1)-orientation by molecular-beam epitaxy (MBE). On the mesa, a low dislocation density of 9×105 cm−2 was confirmed by the etch-pits density (EPD) wet-etching technique. The photoluminescence (PL) intensity at room temperature from the low dislocation PbSe film was much higher than that from the PbSe film grown on the planar area, which further indicated the high-quality of PbSe thin film grown on patterned Si substrate.  相似文献   

12.
Two-step selective epitaxy (SAG/ELO) of (1 1 2¯ 2)GaN on (1 1 3)Si substrate is studied to reduce the defect density in the epitaxial lateral overgrowth. The first SAG/ELO is to prepare a (1 1 2¯ 2)GaN template on a (1 1 3)Si and the second SAG/ELO is to get a uniform (1 1 2¯ 2)GaN. It is found that the reduction of the defect density is improved by optimizing the mask configuration in the second SAG/ELO. The minimum dark spot density obtained is 3×107/cm2, which is two orders of magnitude lower than that found in a (0 0 0 1)GaN grown on (1 1 1)Si.  相似文献   

13.
We present a detailed investigation on the influence of deposition conditions on morphological, structural and optical properties of InN films deposited on Si(1 1 1) and GaN-on-sapphire templates by reactive radio-frequency (RF) sputtering. The deposition parameters under study are nitrogen content in the sputtering gas, substrate–target distance, substrate temperature and RF power. X-ray diffraction measurements confirm the (0 0 0 1) preferred growth orientation and the wurtzite crystallographic structure of the material. For optimized deposition conditions, InN on Si(1 1 1) substrates presents smooth surface with root-mean-square roughness ∼1 nm. Surface quality of the InN films can be further improved by deposition on GaN-on-sapphire templates, achieving root-mean-square roughness as low as ∼0.4 nm, comparable to that of the underlying substrate. The room-temperature absorption edge is located at 1.70 eV. Intense low-temperature photoluminescence peaking at 1.60 eV is observed.  相似文献   

14.
Single crystalline ZnO film was grown on (1 1 1) Si substrate through employing an oxidized CrN buffer layer by plasma-assisted molecular beam epitaxy. Single crystalline characteristics were confirmed from in-situ reflection high energy electron diffraction, X-ray pole figure measurement, and transmission electron diffraction pattern, consistently. Epitaxial relationship between ZnO film and Si substrate is determined to be (0 0 0 1)ZnO‖(1 1 1)Si and [1 1 2¯ 0]ZnO‖[0 1 1]Si. Full-width at half-maximums (FWHMs) of (0 0 0 2) and (1 0 1¯ 1) X-ray rocking curves (XRCs) were 1.379° and 3.634°, respectively, which were significantly smaller than the FWHMs (4.532° and 32.8°, respectively) of the ZnO film grown directly on Si (1 1 1) substrate without any buffer. Total dislocation density in the top region of film was estimated to be ∼5×109 cm−2. Most of dislocations have a screw type component, which is different from the general cases of ZnO films with the major threading dislocations with an edge component.  相似文献   

15.
Growth of tin oxide thin films using molecular beam epitaxy in a pyrolyzed nitrogen dioxide atmosphere on a titanium dioxide (1 1 0) substrate was investigated using X-ray photoelectron spectroscopy (XPS), electron diffraction, and atomic force microscopy (AFM). Properties of deposited films were studied for their dependence on substrate temperature and oxidation gas pressure. Analyses using XPS data revealed that tin atoms were fully oxidized to Sn4+ and SnO2 films were grown epitaxially in deposition conditions of substrate temperatures of 627 K or higher and NO2 pressure greater than 3×10−3 Pa. At a substrate temperature of 773 K, a smooth surface with atomic steps was visible in the SnO2 films, but above or below this temperature, fine grains with crystal facets or porous structures appeared. At pressures of 8×10−4 to 3×10−4 Pa, the randomly oriented SnO phase was dominantly grown. Further decreasing the pressure, the Sn metal phase, which was epitaxially crystallized at less than 500 K, was also grown.  相似文献   

16.
We have studied in reduced pressure chemical vapor deposition the growth kinetics of Si and Si0.8Ge0.2 on bulk Si(0 0 1) and on silicon-on-insulator (145 nm buried oxide/20 nm Si over-layer) substrates. For this, we have grown at 650 °C, 20 Torr 19 periods (Si0.8Ge0.2 19 nm/Si 32 nm) superlattices on both types of substrates that we have studied in secondary ion mass spectrometry, X-ray diffraction and cross-sectional transmission electron microscopy. The Si and SiGe growth rates together with the Ge content are steady on bulk Si(0 0 1), with mean values around 9.5 nm min−1 and 20.2%, respectively. In contrast, growth rates decrease from ∼9.5 nm min−1 down to values around 7.0 nm min−1 (SiGe) and 6.3 nm min−1 (Si), when the deposited thickness on SOI increases from 0 up to slightly more than 100 nm. They then go back up to values around 8.8–9.0 nm min−1 as the thickness increases from 100 up to 400 nm. They then slowly decrease to values around 8.4–8.6 nm min−1 as the thickness increases from 400 up to 800 nm. The Ge concentration follows on SOI exactly the opposite trend: an increase from 19.9% (0 nm) up to 20.6% (∼100 nm) followed by a decrease to values around 20.1% (400 nm) then a slow re-increase up to 20.4% (800 nm). These fluctuations are most likely due to the following SOI surface temperature variations: from 650 °C down to 638 °C (100 nm), back up to 648 °C (400 nm) followed by a slow decrease to 646 °C (800 nm). These data curves will be most useful to grow on conventional SOI substrates large number of periods, regular Si/Si0.8Ge0.2 superlattices that will serve as the core of multi-channel or three-dimensional nano-wires field effect transistors.  相似文献   

17.
GaN nanodots (NDs) are obtained by Ga metallic droplet formation on Si (1 1 1) substrates followed by their nitridation. The size and density of Ga droplets and GaN NDs can be controlled by varying the growth temperature within the range 514–640 °C. Atomic force microscopy (AFM) investigation of Ga droplets shows an increase in the average diameter with temperature. The average diameter of GaN NDs increases with growth temperature while their density decreases more than one order of magnitude. In addition, the formation of a GaN crystallite rough layer on Si, in-between NDs, indicates that a spreading mechanism takes place during the nitridation process. High-resolution transmission electron microscopy (HRTEM) is used for the investigation of shape, crystalline quality and surface distribution of GaN dots. X-ray photoelectron spectroscopy (XPS) results confirm that Ga droplets that are transformed into GaN NDs spread over the sample surface during nitridation.  相似文献   

18.
Epitaxial (1 0 0) silicon layers were grown at temperatures ranging from 500 to 800 °C in a commercial cold-wall type UHV/CVD reactor at pressures less than 7×10−5 Torr. The substrates were 300 mm SIMOX SOI wafers and spectroscopic ellipsometry was used to assess growth rates and deposition uniformities. High-resolution atomic force microscopy (AFM) was employed to verify the atomic terrace configuration that resulted from epitaxial step-flow growth. Deposition from disilane exhibited a nearly perfect reaction limit for low temperatures and high precursor flow rates (partial pressures) with measured activation energies of ≈2.0 eV, while a linear dependence of growth rate on precursor gas flow was found for the massflow-controlled regime. A similar behavior was observed in the case of silane with substantially reduced deposition rates in the massflow-limited regime and nearly a factor of 2 reduced growth rates deep in the reaction limited regime. High growth rates of up to 50 μm/h and non-uniformities as low as 1σ=1.45% were obtained in the massflow-limited deposition regime. Silicon layers as thin as 0.6 nm (4.5 atomic layers ) were deposited continuously as determined using a unique wet chemical etching technique as well as cross-sectional high-resolution transmission electron microscopy (HRTEM). In contrast, epitaxial silicon deposited in RPCVD at 10 Torr using disilane within the same temperature range showed imperfect reaction limitation. While activation energies similar to that of UHV/CVD were found, no partial pressure limitation could be observed. Furthermore, layers deposited using disilane in RPCVD exhibited a large number of defects that appeared to form randomly during growth. We attribute this effect to gas phase reactions that create precursor fragments and radicals—an effect that is negligible in UHV/CVD.  相似文献   

19.
We have performed a detailed investigation of the metal-organic chemical vapor deposition (MOCVD) growth and characterization of InN nanowires formed on Si(1 1 1) substrates under nitrogen rich conditions. The growth of InN nanowires has been demonstrated by using an ion beam sputtered (∼10 nm) Au seeding layer prior to the initiation of growth. We tried to vary the growth temperature and pressure in order to obtain an optimum growth condition for InN nanowires. The InN nanowires were grown on the Au+In solid solution droplets caused by annealing in a nitrogen ambient at 700 °C. By applying this technique, we have achieved the formation of InN nanowires that are relatively free of dislocations and stacking faults. Scanning electron microscopy (SEM) showed wires with diameters of 90–200 nm and lengths varying between 3 and 5 μm. Hexagonal and cubic structure is verified by high resolution X-ray diffraction (HR-XRD) spectrum. Raman measurements show that these wurtzite InN nanowires have sharp peaks E2 (high) at 491 cm−1 and A1 (LO) at 591 cm−1.  相似文献   

20.
In the present work we have grown twin-free single crystal metal films of iridium (Ir), rhodium (Rh), platinum (Pt) and ruthenium (Ru) on silicon (1 1 1) substrates via an yttria-stabilized zirconia (YSZ) buffer layer. A prerequisite for the realisation of heteroepitaxial metal films without additional texture components was the twin-free deposition of the YSZ films by pulsed laser deposition (PLD). For the metal films on top, a novel two-step growth process was applied with an extremely low deposition rate for the first 20 nm. For all metals, a drastic texture improvement by up to a factor of 9 could be observed compared to the oxide buffer layer. Minimum values were 0.18° (Ir) and 0.12° (Rh) for tilt and twist, respectively. For all four metals investigated, twin-free epitaxial films could be grown on YSZ/Si(1 1 1) whereas the twinning problem for platinum films was solved by decoupling the Pt-YSZ interface via an additional iridium interlayer. The grown metal/YSZ/Si(1 1 1) multilayer samples offer the possibility to integrate a variety of interesting nanostructures and functional materials on silicon. They are now available in 4 in wafer size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号