首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a numerical study of Marangoni flows in a floating zone of germanium‐silicon crystals, which was performed by using a commercial finite element program FIDADTM. The numerical results point out that for fluids with a small Pr number the influence of buoyancy forces cannot be ignored in the numerical model. Furthermore, the competition between the thermocapillary (TC) and solutocapillary (SC) flows in the floating zones was qualitatively examined. If the TC flow is as strong as that in the Si‐rich floating zone, the SC flow may be restricted to the bottom area near the free surface. Otherwise, the SC flow may overcome the TC flow and induce a surface transfer of species. The numerical predictions agree well with the previous experiment results. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The two‐dimensional (2D) distributions of surface supersaturation of sodium chlorate crystals with and without solutal convection have been measured by means of a multidirectional interferometry (MDI) technique coupled with the principles of three‐dimensional (3D) computer tomography. When solutal convection was present over a top face, the supersaturation at the center of the face was depleted by a factor of >0.9 with reference to the value at the edges of the crystal. When the convection was suppressed using an upside‐down geometry, the depletion of supersaturation at the center of the face was much smaller, <0.4. Therefore, the supersaturation difference between the edges and the face center, which is responsible for the morphological stability due to volume diffusion for the solute, becomes less important compared to the effect of convection due to hydrodynamic reasons. This result should give us a key to solve why the crystal quality is sometimes better in convection‐free microgravity conditions because of improved stability of a crystal face caused by more homogeneous distribution of supersaturation over the crystal surface.  相似文献   

3.
The surface tension driven‐flow in BaB2O4 (BBO) melt‐solution is visualized by differential interference microscope coupled with Schlieren technique, and the streamline of the steady thermocapillary convection is found to be in form of an axially symmetric pattern. Based on the observation of BBO crystal rotation caused by the convective vortex, the widths of interfacial concentration, heat and momentum boundary layer are calculated. The effect of thermocapillary convection on boundary layer thickness is also investigated. Results show that the width of boundary layer decreases linearly with the increasing of dimensionless Marangoni number. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The segregation of Ga during the growth of Czochralski-Si crystals with Ge codoping was investigated. The effective segregation coefficient of Ga in Ga/Ge-codoped Si crystal growth was nearly constant over a wide Ge concentration range, even at high Ge concentrations of about 1021 cm−3. In contrast, the effective segregation coefficient increased at high B concentrations in Ga/B-codoped CZ-Si crystal growth. The segregation behavior of Ga in Ga/Ge- and Ga/B-codoped CZ-Si crystal growth was theoretically compared. The difference in the segregation coefficients of Ga as a function of the codoped impurity (Ge or B) between the two Si crystals was attributed to a difference in the excess enthalpy due to impurity incorporation into the Si crystal between Ga–Ge pairs and Ga–B pairs  相似文献   

5.
For exploring the optimizing convection control technique by external magnetic field in floating zone crystal growth of semiconductor under microgravity, thermocapillary flow in a floating half‐zone model is simulated numerically, and the influences of both the transversal uniform magnetic field and the magnetic field generated by transversal four coils on thermocapillary flow are investigated. The results indicate that the transversal uniform magnetic field is likely to break the axisymmetrical structure of thermocapillary flow, which is unfavorable to the growth of high‐quality crystal; under the magnetic field generated by transversal four coils, both the mean and the maximum velocities increase with the increment of the distance between coils or the decrement of coil radius; and the convection tends to be more axisymmetrical with increasing coil radius. Compared to the transversal uniform magnetic field, the magnetic field generated by transversal four coils of appropriate radius and relative distance may not only suppress convection, but also enhance the axisymmetry of convection at the same time, and finally, the better convection control can be achieved. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Computer simulation is conducted to study three-dimensional (3D) thermocapillary and buoyancy convections and their effects on the growth interface for horizontal Bridgman crystal growth. The free-boundary model is based on a finite volume approximation of continuity, momentum, and energy equations on a collocated grid. Crystal growth of GaAs is used as an example. From calculated results, it is observed that the effect of buoyancy convection on the growth interface is significant. With the thermocapillary effect, the 3D flow structures are not changed much, but its effect on the growth interface is not trivial. Due to the convections, the growth interface is always concave, and its deflection is affected significantly by the growth rate and thermal environment. A simple strategy of interface control is illustrated. Furthermore, slight crucible tilting can also affect the 3D flows leading to an asymmetric growth interface.  相似文献   

7.
In order to understand the nature of surface spoke patterns on silicon melt in industrial Czochralski furnaces, a series of unsteady three‐dimensional numerical simulations were conducted for thermocapillary‐buoyancy flow of silicon melt in annular pool (inner radius ri = 15 mm, outer radius ro = 50 mm, depth d = 3 mm). The pool is heated from the outer cylindrical wall and cooled at the inner wall. Bottom and top surfaces either are adiabatic or allow heat transfer in the vertical direction. Results show that a small temperature difference in the radial direction generates steady roll‐cell thermocapillary‐buoyancy flow. With large temperature difference, the simulation can predict three‐dimensional oscillatory flow, which is characterized by spoke patterns traveling in the azimuthal direction. The small vertical heat flux (3 W/cm2) does not have significant effects on the characteristics of this oscillatory flow. Details of the flow and temperature disturbances are discussed and the critical conditions for the onset of the oscillatory flow are determined. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Heat and mass transfer in semiconductor float-zone processing are strongly influenced by convective flows in the zone, originating from sources such as buoyancy convection, thermocapillary (Marangoni) convection, differential rotation, or radio frequency heating. Because semiconductor melts are conducting, flows can be damped by the use of static magnetic fields to influence the interface shape and the segregation of dopants and impurities. An important objective is often the suppression of time-dependent flows and the ensuing dopant striations. In RF-heated Si-FZ-crystals, fields up to 0.5Tesla show some flattening of the interface curvature and a reduction of striation amplitudes. In radiation-heated (small-scale) Si-FZ crystals, fields of 0.2–0.5Tesla already suppress the majority of the dopant striations. The uniformity of the radial segregation is often compromised by using a magnetic field, due to the directional nature of the damping. Transverse fields lead to an asymmetric interface shape and thus require crystal rotation (resulting in rotational dopant striations) to achieve a radially symmetric interface, whereas axial fields introduce a coring effect. A complete suppression of dopant striations and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusionlimited case, are possible with axial static fields in excess of 1Tesla. Strong static magnetic fields, however, can also lead to the appearance of thermoelectromagnetic convection, caused by the interaction of thermoelectric currents with the magnetic field.  相似文献   

9.
During directional solidification of a binary alloy at constant velocity, thermosolutal convection may occur due to the temperature and solute gradients associated with the solidification process. For vertical growth in an ideal furnace (lacking horizontal gradients) a quiescent state is possible. For a range of processing conditions, the thermal Rayleigh number is sufficiently small that the stabilizing role of the thermal field during growth vertically upwards may be neglected, and only solutal convection need be considered. The effect of a time-periodic vertical gravitational acceleration (or equivalently vibration) on the onset of solutal convection is calculated based on linear stability using Floquet theory. We find that a stable base state can be destabilized due to modulation, while an unstable state can be stabilized. The flow and solute disturbance fields show both synchronous and subharmonic temporal response to the driving sinusoidal modulation.  相似文献   

10.
The result of a μg‐experiment on the Gradient‐Freeze growth of Ge:Zn with doping from the vapour phase shows a homogeneous distribution of the zinc in the melt, indicating the dominating role of a gravity‐independent transport mechanism. This effect is investigated numerically on the basis of a global model of the growth setup. The numerical simulation includes the melt flow and the transport of the dopant taking into account buoyant and thermocapillary forces. The results confirm the minor influence of gravity on the species transport. The complete mixing of the melt can be explained by thermocapillary (Marangoni) convection only.  相似文献   

11.
A numerical simulation study was carried out for CdZnTe vertical Bridgman method crystal growth with the accelerated crucible rotation technique (ACRT). The convection, heat and mass transfer in front of the solid‐liquid interface, and their effects on the solute segregation of the grown crystal can be characterized with the following. ACRT brings about a periodic forced convection in the melt, of which the intensity and the incidence are far above the ones of the natural convection without ACRT. This forced convection is of multiformity due to the changes of the ACRT parameters. It can result in the increases of both the solid‐liquid interface concavity and the temperature gradient of the melt in front of the solid‐liquid interface, of which magnitudes vary from a little to many times as the ACRT wave parameters change. It also enhances the mass transfer in the melt in a great deal, almost results in the complete uniformity of the solute distribution in the melt. With suitable wave parameters, ACRT forced convection decreases the radial solute segregation of the crystal in a great deal, even makes it disappear completely. However, it increases both the axial solute segregation and the radial one notably with bad wave parameters. An excellent single crystal could be gotten, of which the most part is with no segregation, by adjusting both the ACRT wave parameters and the crystal growth control parameters, e.g. the initial temperature of the melt, the temperature gradient, and the crucible withdrawal rate. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We describe a numerical approach of the solidification of binary alloys to study the motion of a crystal/melt interface submitted to current pulses involving a modification of the dopant concentration field. For the thermal aspect, the Thomson effect, the Peltier effect and Joule heating have been included in the heat flow. For the solutal segregation, our model is based on mass transports which occur in the liquid phase, namely diffusion and convection. Numerical computations are validated by comparison with experimental data and thus could find applications in the prediction of the effects of Peltier pulse marking in crystal growth.  相似文献   

13.
A dislocation‐free silicon single crystal doped with 1020 cm‐3 germanium (Ge) has been grown using the Czochralski (CZ) growth technique. The Ge concentration in the seed‐end and tang‐end of the crystal was 8×1019cm‐3and 1.6×1020 cm‐3, respectively. The effective segregation coefficient of Ge, the distribution of flow pattern defects (FPDs) and the wafer warpage have been characterized. Both the effective segregation coefficient and the equilibrium segregation coefficient of Ge in silicon were evaluated. Then, the density of FPDs was traced from seed‐end to tang‐end of the ingot, a suppression of FPDs by Ge doping was shown. That is probably because the Ge atoms consume free vacancies and thus a higher density of smaller voids is formed. Furthermore, the mechanical strength of wafers has also been characterized by batch warpage analysis. The warpage in the seed‐end was larger than that in the tang‐end of the ingot, showing that the mechanical strength of wafers is enhanced by Ge doping. Such improvement is interpreted by an enhanced dislocation pinning effect associated with the enhanced nucleation of grown‐in oxygen precipitates in the Ge‐doped silicon wafers. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The influence of weak convection, caused by surface tension forces, on radial dopant segregation occurring in crystals grown under microgravity conditions is studied numerically. The geometry considered corresponds to a floating-zone configuration with partially coated melt surfaces consisting of small evenly distributed spots of free surfaces. In order to distinguish dopant distribution due to weak convection clearly from distribution due to diffusion the spots only cover one quarter of the periphery. Thus, surface tension-driven convection is allowed only over one quarter of the floating-zone configuration resulting in an asymmetric dopant distribution. The percentage of free surfaces present is varied in order to alter the Marangoni flow rates. The maximum dopant concentration due to radial segregation is plotted as a function of a certain convection level. The results of the present numerical study are supposed to be used to design corresponding space experiments launched at the end of the year 2000.  相似文献   

15.
Under a rotating magnetic filed (RMF), the instability of thermocapillary flow and its evolution with increasing Marangoni number (Ma) for semiconductor melt (Pr = 0.01) in a floating liquid bridge model (As = 1) are investigated numerically. Under 5 mT RMF, the thermocapillary flow is steady and axisymmetric with Ma < Mac, and the critical Marangoni number Mac for convection instability is 29.5, which is obtained by the direct numerical simulation. When the Ma is a little bit beyond the Mac, the thermocapillary flow loses stability to become a three‐dimensional rotating oscillatory convection, and a periodic oscillation is confirmed by the fast Fourier transform analysis, the oscillatory main frequency decays with increasing Ma. Under 1 mT–6 mT RMF, the Mac increases roughly with the magnetic strength except the Mac at 4 mT, where the corresponding change of flow mode after the instability is observed. The oscillatory convection occurs with a smaller Ma in the RMF than that without magnetic field. In addition, no instability toward a three‐dimensional steady convection, which is the state of thermocapillary flow without magnetic field after the first instability, is observed under the RMF.  相似文献   

16.
Bidirectional temperature gradients coexist virtually in surface tension driven flows. However, the simulations have been performed to the flow with only one temperature gradient. A series of 3 D numerical simulations are conducted to investigate the Marangoni‐thermocapillary flow of silicon melt in a thin annular layer with bidirectional temperature gradients. The temperature gradients are produced by the temperature difference ΔT between walls and the constant heat flux q on the bottom, respectively. When changing q, the melt presents different state evolutions at different ΔT. Furthermore, two critical q are found, one makes the minimum melt temperature higher than the crystallization temperature and the other makes the flow unsteady. Both of the critical heat fluxes decrease with increasing ΔT. q contributes more to the elevation of the melt temperature, while ΔT contributes more to the enhancement of the melt instability. In addition, the melt on the free surface flows mainly along the radial direction.  相似文献   

17.
The influence of convection and heat and mass transfer on the shape and position of melt/solid interfaces and on radial composition segregation is analysed numerically for the travelling heater method growth of a binary alloy in a vertical transparent ampoule. Results are presented for crystal and melt with thermophysical properties similar to CdxHg1−xTe with the assumption that the pseudobinary CdTe-HgTe phase diagram is true. The two-dimensional axisymmetric heat transfer equation, hydrodynamical equation and convective diffusion equation are included in the mathematical model. The rates of crystal growth and dissolution are supposed to be proportional to the compositional supercooling in the melt near the interfaces. It is shown for the conditions when convection is absent that the interfaces are asymmetrically positioned respectively to the heater centre line. Intensive convection makes their position more symmetrical but the length of the liquid zone greater. The flow pattern in the melt appears to be greatly influenced by solutal gravitational convection. The nonlinear dependence of the melt density on the temperature and composition are used in the model. The cases when speed of the heater is antiparallel (stable density stratification) or parallel (unstable stratification) to the vector of gravitational acceleration are considered.  相似文献   

18.
Large eddy simulation model is used to simulate the fluid flow and heat transfer in an industrial Czochralski crystal growth system. The influence of Marangoni convection on the growth process is discussed. The simulation results agree well with experiment, which indicates that large eddy simulation is capable of capturing the temperature fluctuations in the melt. As the Marangoni number increases, the radial velocity along the free surface is strengthened, which makes the flow pattern shift from circumferential to spiral. At the same time, the surface tension reinforces the natural convection and forces the isotherms to curve downwards. It can also be seen from the simulation that a secondary vortex and the Ekman layer are generated. All these physical phenomena induced by Marangoni convection have great impacts on the shape of the growth interface and thus the quality of the crystal. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Due to temperature and concentration gradients in the molten phase, it is well known that convective flows can develop in the bulk under normal conditions of gravity. These motions modify the shape of the growing interface and the concentration distribution along it. This study will only focus on the case of pure solutal convection and the effect of a given interface curvature on the flow. In particular, the transition from a 3D-flow to a 2D one as a function of the interface curvature is examined in order to investigate possible values of the operating parameters and fluid properties. The main aim is to justify the use of 2D-simulation tools for predicting the convective transport in cylindrical crystal growth ampoules.  相似文献   

20.
Crystal defects of various kinds found in epitaxially grown Si/Ge alloy layers on Si substrate, may be either inherent to the material and originating from atomic radii misfit, or can be traced to the growth process and controlled or eliminated by varying its parameters. A network of slip lines, becoming more pronounced with increased Ge content, indicates plastic deformation resulting from partial relief of stresses during the high temperature growth process. Electron microprobe and X-ray diffraction analysis indicate some Ge segregation in the fault vicinity, and a slight anisotropy in the lattice constant expansion due to the Ge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号