首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李韶华  冯桂珍  丁虎 《力学学报》2021,53(9):2554-2568
轮毂电机驱动电动汽车的簧下质量大, 使得轮胎动载荷增加, 且电机激励进一步加剧车轮振动. 同时, 轮胎与路面单点接触的简化模型, 其动力学计算结果与实际存在差别. 鉴于此, 考虑电机的电磁激励、胎路多点接触和非线性地基, 建立了电动汽车?路面系统机电耦合动力学模型, 通过Galerkin法推导了非线性地基梁的垂向振动, 利用积化和公式推导了非线性地基梁中非线性项积分的精确表达式, 提出了路面截断阶数选取的简易方法, 并通过路面位移响应的收敛性进行了验证. 在此基础上, 研究了胎路多点接触、非线性地基、电机激励、车速、路面不平顺幅值等对路面及车辆响应的影响. 结果表明, 非线性地基及多点接触对车辆响应的影响中, 轮胎动载荷的影响最大, 车身加速度和悬架动挠度的影响较小, 且考虑电机激励时, 二者对车辆响应的影响显著增大. 从对路面响应的影响看, 电机激励的影响最大, 非线性地基的影响次之, 多点接触的影响较小. 所建模型及研究方法可为电动汽车的垂向动力学分析提供一种新思路.   相似文献   

2.
We consider the problem of modeling the test where a solid-rubber tire runs on a chassis dynamometer for determining the tire rolling resistance characteristics.We state the problem of free steady-state rolling of the tire along the test drum with the energy scattering in the rubber in the course of cyclic deformation taken into account. The viscoelastic behavior of the rubber is described by the Bergströ m–Boyce model whose numerical parameters are experimentally determined from the results of compression tests with specimens. The finite element method is used to obtain the solution of the three-dimensional viscoelasticity problem. To estimate the adequacy of the constructed model, we compare the numerical results with the results obtained in the solid-rubber tire tests on the Hasbach stand from the values of the rolling resistance forces for various loads on the tire.  相似文献   

3.
There is a need to radically increase mobility of terrain vehicles through new modalities of vehicle locomotion, i.e., by establishing a new technological paradigm in vehicle dynamics and mobility. The new paradigm greatly applies to military vehicles for the radical improvement of tactical and operational mobility. This article presents a new technological paradigm of agile tire slippage dynamics that is studied as an extremely fast and exact response of the tire–soil couple to (i) the tire dynamic loading, (ii) transient changes of gripping and rolling resistance conditions on uniform stochastic terrains and (iii) rapid transient changes from one uniform terrain to a different uniform terrain. Tire longitudinal relaxation lengths are analyzed to characterize the longitudinal relaxation time constants. A set of agile characteristics is also considered to analyze agile tire slippage dynamics within a time interval that is close to the tire longitudinal relaxation time constants. The presented paradigm of agile tire slippage dynamics lays out a foundation to radically enhance vehicle terrain mobility by controlling the tire slippage in its transient phases to prevent the immobilization of a vehicle. Control development basis and requirements for implementing an agile tire slippage control are also analyzed and considered.  相似文献   

4.
The dynamic behavior of vehicles which are equipped with pneumatic tires depends, to a degree, on the properties of the tire. Therefore, road handling and comfort are also affected by tire characteristics. When the inflation pressure is reduced one obtains a softer “spring”. The dynamic spring coefficient Cdyn increases with increasing rolling speed. Damping coefficient k is related to the excitation frequency by a power function. This function shows a sharp negative slope for low velocities. These conclusions apply to the tire types and test conditions described in this paper.  相似文献   

5.
基于实验的数值反演的滚动轮胎稳态温度场的有限元分析   总被引:11,自引:0,他引:11  
根据轮胎温度场的单向解耦分析思想,形成了一个基于ABAQUS程序的轮胎稳态温度场的分析方法,单向解耦过程分为变形、损耗、热传导三个分析过程。变形分析中,采用了平衡态的超弹性材料模型;损耗分析中,依据变形分析获得的应力应变场,结合材料粘性损耗特性来获得损耗能量;热传导分析中,依据实测的轮胎胎侧温度场,提出了一种基于实验的数值反演方法来确定胎侧的对流热边界条件。由于轮胎胎侧的形状和结构细节,其对流热边界不同于旋转平圆盘的对流热边界,本文的数值反演方法避免了实测胎侧对流热交换系数的困难。  相似文献   

6.
In the present study, the effect of vertical load, tire inflation pressure and soil moisture content on power loss in tire under controlled soil bin conditions were investigated. Also a finite element model of tire-soil interaction in order to achieve a suitable model for predicting power loss in tire was created. Increasing the vertical load on the tire had a noteworthy impact on increasing the tire contact volume with the soil, reducing the percentage of slip, and increasing the rolling resistance; although, reducing the load on the tire had the opposite effect. At a constant inflation pressure, by increasing the vertical load on the tire, the amount of power loss due to the rolling resistance and the total power loss in the tire increased. Increase in soil moisture content increased the power loss caused by slip. Increasing the inflation pressure at a constant vertical load, also increasing the soil moisture content, led to an increase in the power loss caused by rolling resistance, and increase total power loss. The obtained error for estimating power loss of rolling resistance and total power loss was satisfactory and confirmed the acceptability of the model for power loss estimation.  相似文献   

7.
Measurements on rolling tire deformation provide deep insights into the mechanism of generating tire forces and moments. For free rolling tires, substantial attention has been given to the rolling resistance because of its significant impact on the fuel consumption and CO2 emissions. This paper attempts to investigate the rolling resistance force through measurements of the rolling deformation of truck tires using a tire sensing approach. An optical tire sensor system is used to measure rolling tire deformation, which includes the deformed inner profile, sidewall deformation, and tread deformation. Measurements were conducted on a test truck for both new and used tires. In addition, the influences from operational factors such as wheel load and inflation pressure on tread deformation were examined and analyzed.  相似文献   

8.
An analytical model for a compliant non-pneumatic tire on frictionless, rigid ground is presented. The tire model consists of a thin flexible annular band and spokes that connect the band to a rigid hub. The annular band is modeled using curved beam theory that takes into account deformations due to bending, shearing and circumferential extension. The effect of the spokes, which are distributed continuously in the model and act as linear springs, is accounted for only in tension, which introduces a nonlinear response. The quasi-static, two-dimensional analysis focuses on how the contact patch, vertical tire stiffness and rolling resistance are affected by the stiffness properties of the band and the spokes. A Fourier series representation of the shear strain in the annular band and the complex modulus of the material were used to predict rolling resistance due to steady state rolling. From the analysis point of view, when the wheel is loaded at its hub, the following three distinct regions develop: (1) a support region where the hub hangs by the spokes from the upper part of the flexible band, (2) a free surface region where the spokes buckle and have no effect, and (3) a contact region where the flexible band is supported by the ground without the effect of the spokes. The angular bounds of these three regions are determined by the spoke angle and the contact angle, which are respectively the angle at which the spokes start to engage in tension and the angle that defines the edge of contact. Closed-form expressions of contact stress, stress-resultants and displacements at the centroids of the cross-sections of the flexible band are expressed in terms of these angles, which must be determined numerically. A thorough parametric analysis of quantities of interest for the tire is presented, which can be used to help support the optimal and rational design of compliant non-pneumatic tires. The model was validated by comparison with two computational models using the commercial finite element software ABAQUS and by experimental rolling resistance data.  相似文献   

9.
子午线轮胎驻波现象和临界速度的有限元分析   总被引:1,自引:0,他引:1  
利用ABAQUS软件建立了较完整系统的轮胎驻波现象的有限元模型和分析方法,包括充气、加载、匀速滚动和加速滚动过程的有限元分析以及确定轮胎驻波临界速度的Euler描述和表征的方法.由此得到的轮胎驻波临界速度与试验值吻合较好.着重分析了载荷、充气压力对临界速度的影响,结果表明,增大充气压力会显著提高临界速度,而载荷的影响则可以忽略不计.  相似文献   

10.
The author has applied traction-slip curves obtained from drawbar pull tests to determine values of the adhesive parameters controlling the peripheral forces of rubber tires rolling on concrete. The method is based on an analogy with soil shear strength characterized by cohesion, the angle of internal friction, and the tangent modulus of the derived shear-deformation curve. The peripheral force generated by a tire rolling on concrete is the total force required to shear the interlocking elementary particles in the contact patch. The adhesive parameters derived using this method are average values expressing the effect of all factors which contribute to producing the peripheral force.  相似文献   

11.
张银龙  沈庆  陈徐均 《应用力学学报》2005,22(2):247-252,i009
波浪和内部滑动车辆共同作用,使滚装船的横摇加剧。这是许多滚装船发生倾覆的重要原因之一。本文对由滚装船和滑动车辆组成的浮基多体系统中,取滚装船的横摇角和车辆在甲板上的横向位移为此系统的两个自由度。考虑非线性恢复力矩和非线性阻尼力矩的影响,运用浮基多体系统动力学方法,建立了系统的动力学方程。以某型海峡滚装渡轮为例,对在若干车辆同步滑动和波浪共同作用下的滚装船非线性横摇响应和车辆位移响应进行了数值计算,并与线性响应进行了比较,得出了考虑非线性时横摇角显著偏大的结论。  相似文献   

12.
Impact affects the dynamic characteristics of mechanical multi-body systems and damages those rotating parts, such as the joint rolling element bearings, which are high-precision, defect intolerant components. Based on multi-body dynamic theory, Hertzian contact theory, and a continuous contact model, this study proposed a modelling method that can describe the dynamic behaviour of planar mechanical multi-body systems containing a rolling ball bearing joint under impact. In this method, the rigid bodies and bearing joint were connected according to their joint force constraints; the impact constraint between the multi-body system and the target rigid body was constructed using a continuous contact force model. Based on this method, the reflection relationship between the external impacts of the mechanical multi-body system and the variation law governing the dynamic load on the rolling bearing joint were revealed. Subsequently, an impact multi-body system, which was composed of a sliding–crank mechanism containing a rolling ball bearing joint and the target rigid body with an elastic support, was analysed to explore the dynamic response of such a complex discontinuous dynamic system andthe relevant relationship governing the dynamic load on the rolling bearing joint. In addition, a multi-body dynamic simulation software was used to build a virtual prototype of the impact slider–crank system. Compared with the theoretical model, the prototype had an additional deep groove ball bearing. That is to say, the prototype model took account of the specific geometric structural characteristics and the complex contact relationship of the inner and outer races, rolling balls, and bearing cage. Finally, the effectiveness of the theoretical method proposed in this study was verified by comparative analysis of the results. The results suggested that the external impact of a mechanical multi-body system was prone to induce sudden changes in the equivalent reaction force on its bearing joint and the dynamic load carried on its rolling balls. This study provided an effective method for exploring the distribution characteristics of dynamic loads on rolling ball bearing joints under working impact load conditions. Moreover, it offered support for the parameter optimisation of geometric structure, performance evaluation, and dynamic design of the rolling ball bearings.  相似文献   

13.
14.
The dynamic characteristic of the tires is a key factor in the road-induced interior noise in passenger vehicles. The tire acoustic cavity is a very important factor in the tire dynamics and it must be considered in analyses. This paper describes a closed form analytical model for tire-wheel structures. In order to incorporate the dynamics of the cavity on the tire response, the tire acoustic-structure coupled problem is solved simultaneously. The tire is modeled as an annular cylindrical shell where only the outside shell is flexible, i.e. tire sidewalls and wheel are assumed rigid. From the analytical solution of the eigenproblems, both the tire structure and cavity acoustic responses are expanded in terms of their eigenfunctions. The main objective of the model is to have an efficient tool to investigate the physical coupling mechanisms between the acoustic cavity and the tire structure without the need of complicated numerical model such as finite elements. The result shows that the proposed model captures the main mechanisms of the effect of the tire air acoustic on the tire dynamics.  相似文献   

15.
The efficiency of a geometric multigrid method for solving the tire rolling problem is studied. The optimal components of this method are chosen. A good convergence of the method is shown for the systems that are large from the practical point of view. Its distinctive feature is a grid refinement in the circumferential direction only.  相似文献   

16.
In this contribution, a numerical framework for the efficient thermo-mechanical analysis of fully 3D tire structures (axisymmetric geometry) in steady state motion is presented. The modular simulation approach consists of a sequentially coupled mechanical and thermal simulation module. In the mechanical module, the Arbitrary Lagrangian Eulerian (ALE) framework is used together with a 3D finite element model of the tire structure to represent its temperature-dependent viscoelastic behavior at steady state rolling and finite deformations. Physically computed heat source terms (energy dissipation from the material and friction in the tire–road contact zone) are used as input quantities for the thermal module. In the thermal module, a representative cross-sectional part of the tire is employed to evaluate the temperature evolution due to internal and external heat sources in a transient thermal simulation. Special emphasis is given to an adequate material test program to identify the model parameters. The parameter identification is discussed in detail. Numerical results for three different types of special performance tires at free rolling conditions are compared to experimental measurements from the test rig, focusing especially on rolling resistance and surface temperature distribution.  相似文献   

17.
基于轮胎非线性特性的汽车动力学问题   总被引:2,自引:0,他引:2  
长期以来,人们对轮胎的非线性进行了大量的理论与试验研究,总结出各种理论模型与经验模型。利用这些非线性轮胎模型建立汽车动力学的非线性常微分方程组,通过数值积分,可以获得汽车在各种工况条件下的稳态与瞬态转向特性。但这些模型的普遍缺点是不能用于对汽车行驶的稳定性作定性分析。本文提出了一种轮胎非线性侧特性的摄动模型,利用近似解析方法,讨论了轮胎非线性特性对汽车的转向特性、动态响应和汽车行驶稳定性的影响,导  相似文献   

18.
In order to predict the performance of pneumatic tires with respect to rolling dimensions and traction, it is necessary to determine the relationships between a tire's dimensions and its behaviour under load. In this paper, mathematical expressions are given describing tire deflection, contact area dimensions, and load carrying capacity. A means of determining ply rating when the required load capacity and dimensions are known is also presented. The relationships are all based on the results of tire tests.  相似文献   

19.
Common effect of wave and slip of internal vehicles will make rolling of the roll-on ship serious. This is one of the important reasons for overturn of ro-ro ships. The multibody system with a floating base is composed of ro-ro ship and slipping vehicles. Takes the rolling angle of the ship and the transverse displacements of the slipping vehicles on desk as freedoms. Making use of the analysis of apparent gravitation and apparent buoyancy, the wave rolling moment is derived. By means of dynamic method of multibody system, dynamic equations of the system are established. Taking a certain channel ferry as an example, a set of numerical calculation have been carried out for rolling response of the multibody system with a floating base of a ro-ro ship and displacements response of the slipping vehicles under common effect of free slipping vehicles and wave, and a conclusion has been drawn that the motion of the numerous free slipping heavy loads will trend to be synchronous under restraining of the side-wall bulkhead with time because of repeated collision.  相似文献   

20.
轨下支承失效对直线轨道动态响应的影响   总被引:5,自引:0,他引:5  
建立了基于Timoshenko梁模型的车辆/轨道耦合动力学模型,分析轨下支承失效对直线轨道动态响应的影响. 钢轨被视为连续弹性离散点支承上的无限长Timoshenko梁,通过假设轨道系统刚度沿纵向分布发生突变来模拟轨下支承失效状态. 推导了考虑钢轨横向、垂向和扭转运动的轮轨滚动接触蠕滑率计算公式. 利用Hertz法向接触理论和沈氏蠕滑理论计算轮轨法向力及轮轨滚动接触蠕滑力. 采用移动轨下支承模型的车辆/轨道耦合系统激振模式,考虑轨枕离散支承对系统动力响应的影响. 通过新型显式积分法求解车辆/轨道耦合动力学系统运动方程,由数值分析计算得到不同轨下支承失效状态下直线轨道的动态响应. 结果表明,轨下支承失效对直线轨道变形及加速度有显著的影响,随着失效轨下支承个数的增加,轮轨相互作用力和轨道部件的位移、加速度将会急剧增大,将加速失效区段线路状况的恶化.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号