首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
针对压电式高压传感器等的幅值灵敏度脉冲压力校准中的量值溯源问题,将一种基于牛顿第二定律的液体脉冲压力激光干涉测量方法用于落锤式液体高脉冲压力校准装置。通过质量块的动力学建模以及激光干涉测量质量块的加速度,得到脉冲压力幅值大小,使脉冲压力幅值能溯源到时间、长度与质量等基本量。通过对压力和加速度分布不均、摩擦力等影响进行理论与实验分析,压电式压力传感器幅值灵敏度校准不确定度得到了完整评估。激光干涉法液体脉冲压力校准装置压力幅值覆盖(10~500)MPa,扩展不确定度在1.8%以内。  相似文献   

2.
利用待测压力与薄膜加速度之间的正比例关系来获取冲击波反射超压峰值的新型测量方法已经得到初步实验验证,该方法具有无需标定、制作简单、成本低廉、测量精度高等优点。为优选薄膜式压力传感器的主要参数,并获取压力测量的不确定度,开展了数值模拟,分析了薄膜厚度、待测压力、拟合参数等因素对压力测量的影响。对薄膜的位移或速度信号进行了拟合处理,获得了冲击起始时刻薄膜的加速度,进而得到了待测压力峰值;将获得的压力与标准压力进行比对,得到了拟合时长、拟合多项式阶次、薄膜厚度等因素的优选值,并获得了薄膜式压力传感器的主要技术指标。另外,开展了激波管比对实验,验证了数值模拟的相关结论。  相似文献   

3.
针对Ф2mm压电石英传感器有效测试面积小、信号弱、易受干扰的特点,对不同真空度、不同飞片速度下的空气冲击波压力进行计算分析,得出在20Pa以下的真空度中进行微喷测量时,残存空气对Ф2mm压电石英传感器的影响可以忽略;利用此条件下的实验数据,估算了影响Ф2mm压电石英传感器真空度的上限值。  相似文献   

4.
石英晶体谐振器的力频效应在传感器方面有重要的应用,针对传统石英晶体谐振器力灵敏度偏低,以及温度变化等因素引起的频率漂移等难题,提出了一种在基于同一石英基片上的力敏谐振器集群。通过弹性力学方法理论推导和计算了石英晶体薄圆片受径向力作用时片内各点的应力分布,得到石英晶体谐振器圆盘内各点的力频特性,建立了石英谐振器集群力传感系统。实验结果表明石英谐振器集群力频灵敏度系数达到7333 Hz/N,力敏特性明显优于传统的单电极谐振器,该石英谐振器集群可以作为敏感元件应用于力(或应力)检测以及惯性传感器等数字式测控领域。  相似文献   

5.
BK14-2型压电石英加速度计的研究   总被引:2,自引:0,他引:2  
本文利用压电石英晶体谐振器进行加速度计的研究,采用石英晶体谐振器作为测量惯性力的敏感元件,利用石英晶体谐振器的压电效应,通过敏感惯性力进而实现对线加速度的测量。结果表明该加速度计具有良好的线性和稳定性,测量范围±40g,线性度优于10-4,灵敏度大于400Hz/g。  相似文献   

6.
PVDF压力传感器的冲击压电特性研究   总被引:4,自引:0,他引:4  
张安跃  唐志平  郑航 《实验力学》2009,24(3):244-250
PVDF薄膜是一种新型的聚合物压电材料.为了研究PVDF薄膜在低压和一维应变下的压电特性,利用立式Hopkinson压杆和一级轻气炮标定了自研制PVDF压力传感器的压电曲线,实验表明该应力传感器频响高,波形稳定,线性度良好,拟合灵敏度系数K值在0~20MPa和100~450MPa压力范围分别为14.96pC/N和11.9pC/N,可以基本满足动态冲击应力测试的要求.但由于PVDF薄膜的系数K受多方面的影响,定量分析有相当难度,建议使用跟实际工作状况相近的标定K值.  相似文献   

7.
在爆炸容器中进行小药量空中爆炸实验, 利用传感器序列测量冲击波速度, 根据冲击波Rankine-Hugoniot关系获得测点近似理论峰值压力, 从而实现压力传感器的标定, 获得的灵敏度相对误差较小。同时测量了相应的冲击波参数, 并利用Modified-Friedlander公式进行数据后处理, 结果表明固定超压拟合更接近物理事实, 固定正相时间拟合也具有较高精度。最后进行了误差分析, 发现不同传感器特性及数据后处理方法都会带来一定误差。实验结果表明这种测量和后处理方法具有较高的精度, 可以同时标定传感器和测量冲击波参数。  相似文献   

8.
吴卅建  李沛  张培强  吕品 《实验力学》2003,18(3):419-425
从AT切的石英晶体等效电路出发,利用电路理论推导单片石英晶体上耦合电极的相互影响,相互耦合作用用复电阻描述,然后通过实验观察复电阻的频率特性,分析其具体的形式,同时通过实验初步观察了MQCM(multi-channel quartz crystal microbalance)对石英片谐振频率的影响,以及不同电极尺寸对耦合的影响。  相似文献   

9.
弹丸侵彻混凝土加速度信号测试及分析   总被引:1,自引:0,他引:1  
针对弹丸侵彻混凝土加速度信息获取及实测信号失效问题,采用弹载存储测试系统进行了实验,并基于LS-DYNA进行了高速碰撞过程的数值模拟,经处理后的数据曲线与实测侵深符合较好,数值模拟计算结果与实验结果较吻合。通过实验分析与理论推导相结合的方式对应力波、测试装置的基础运动和安装结构刚度、加速度计安装方式等部分影响因素进行了实测加速度信号的影响分析,分析结果对高g值冲击测试问题具有一定的参考价值。  相似文献   

10.
针对MEMS磁传感器存在测量噪声大的问题,利用MEMS磁传感器体积小的特点,设计了阵列形式的MEMS磁传感器测量模块,减小了测量噪声对标定结果的影响。通过合理的硬件设计,实现同一时刻采集32个MEMS磁传感器信号。在硬件设计基础上,通过对阵列MEMS磁传感器建模与分析,设计了基于阵列MEMS磁传感器的标定方法。通过仿真及实物系统实验,验证了所提出方法的有效性。系统实验结果表明,采用阵列MEMS磁传感器标定结果的归一化模值标准差较单个磁传感器减小了70%。  相似文献   

11.
An aluminum split Hopkinson pressure bar is instrumented with quartz force transducers and used to test low impedance materials. Two transducers are used, one at the interface between the specimen and the incident bar and the other at the interface between the specimen and the transmitter bar. It is shown that the stress measured by the incident bar gage often contains a substantial acceleration component, i.e., a significant portion of the signal recorded by the gage is due to its own inertia and not representative of the stress within the sample. Attempts are made to actively compensate for this with measurements of the acceleration of the gage. This is done in three ways: (i) by differentiation of the interface velocity, as determined by a standard strain gage analysis; (ii) by a more direct determination of acceleration, using a measurement of the strain gradient within the bar; (iii) by adding a compensation crystal and mass to the gage to remove the inertial component from the output. It is shown that all three techniques successfully mitigate inertial effects.  相似文献   

12.
提出了一种薄膜式的光纤压力传感技术,用于测量冲击波的反射超压峰值。该技术通过建立待测压力与薄膜加速度之间的正比例关系来获取压力。结合Fabry-Perot腔光学干涉测量技术,设计并加工实现了一种光纤压力传感器。开展数值模拟和激波管实验,结果证明,该压力获取技术可行,且该技术具有无须标定、制作简单、成本低廉、测量精度高、响应时间快的优点。  相似文献   

13.
To study the impulsive pressure generated by cavitation bubble collapse, a PVDF piezoelectric array of pressure sensors is developed. The sensor array is fabricated directly on a 25 μm thick aluminum-metalized polarized PVDF film using a laser micro-machining technique. Dynamic calibration of the sensor array is accomplished in a gas shock tube. The average response time of the PVDF sensors to the fast-rising gas dynamic shock is found as fast as 31 ns. The array sensor is then attached on the solid boundary attacked by the collapse of the bubble. The features and the possible mechanisms of the impulsive pressure are discussed. The high sensitivity, low crosstalk, and low cost of the PVDF sensor array indicates its applicability in high amplitude impulsive field measurements.  相似文献   

14.
Performance evaluation of accelerometers used for penetration experiments   总被引:4,自引:0,他引:4  
We present a Hopkinson bar technique to evaluate the performance of accelerometers that measure large amplitude pulses, such as those experienced during projectile penetration tests. An aluminum striker bar impacts a thin Plexiglas or copper disk placed on the impact surface of an aluminum incident bar. The Plexiglas or copper disk pulse shaper produces a nondispersive stress wave that propagates in the aluminum incident bar and eventually interacts with a tungsten disk at the end of the bar. A quartz stress gage is placed between the aluminum bar and tungsten disk, and an accelerometer is mounted to the free end of the tungsten disk. An analytical model shows that the rise time of the incident stress pulse in the aluminum bar is long enough and the tungsten disk length is short enough that the response of the tungsten disk can be accurately approximated as rigid-body motion. We measure stress at the aluminum bar-tungsten disk interface with the quartz gage and we calculate rigid-body acceleration of the tungsten disk from Newton's Second Law and the stress gage data. In addition, we measure strain-time at two locations on the aluminum incident bar to show that the incident strain pulse is nondispersive and we calculate rigid-body acceleration of the tungsten disk from a model that uses this strain-time data. Thus, we can compare accelerations measured with the accelerometer and accelerations calculated with models that use stress gage and strain gage measurements. We show that all three acceleration-time pulses are in very close agreement for acceleration amplitudes to about 20,000 G.  相似文献   

15.
The effect of pressure on the gage factor (the strain coefficient of resistance) for a bonded constantan gage was investigated by measuring the compliance of single-crystal quartz in the direction of itsc-crystallographic axis as a function of pressure and by comparing these results with those derived from ocoustic-velocity data. The gage factor is indicated as increasing with pressure at a rate of approximately 0.4 percent per kilobar. This increase may be due to one or both of two factors: an increase in the resistivity-strain tensor or a thinning and stiffening of the gage cement.  相似文献   

16.
This paper describes the behavior of small foil strain gages under high pressure. Effects of pressure were determined and calibration curves were established in prelininary experiments. The calibrations were then used for correcting measured strains in pressure vessels. Preliminary experiments at room temperature were conducted on small foil strain gages for pressures up to 35,000 psi. The effects of pressure on the gages bonded with a cynoacrylate contact cement, a room-temperature epoxy cement, a high-temperature epoxy cement and a filled epoxy resin were evaluated. Because the contact cement was least affected by pressure and was easiest to apply, it was chosen for use in successive experiments with different gage installations. Calibration curves were determined for strain gages of 0.031-, 0.062- and 0.125-in. gage lengths. The compensating gages were under atmospheric pressure. The calibrations included the pressure effects of gages bonded on both concave and convex surfaces, and the effect of tensile prestrains. Data could be duplicated for successive pressure tests and for several gage installations. The calibration curves proved to be an effective way for obtaining accurate readings from the foil strain gages bonded internally to a pressure vessel.  相似文献   

17.
Shock wave formation and acceleration in a high-aspect ratio cross section shock tube were studied experimentally and numerically. The relative importance of geometric effects and diaphragm opening time on shock formation are assessed. The diaphragm opening time was controlled through the use of slit-type (fast opening time) and petal-type (slow opening time) diaphragms. A novel method of fabricating the petal-type diaphragms, which results in a consistent burst pressure and symmetric opening without fragmentation, is presented. High-speed schlieren photography was used to visualize the unsteady propagation of the lead shock wave and trailing gas dynamic structures. Surface-mounted pressure sensors were used to capture the spatial and temporal development of the pressure field. Unsteady Reynolds-Averaged Navier–Stokes simulation predictions using the shear-stress-transport turbulence model are compared to the experimental data. Simulation results are used to explain the presence of high-frequency pressure oscillations observed experimentally in the driver section as well as the cause of the initial acceleration and subsequent rapid decay of shock velocity measured along the top and bottom channel surfaces. A one-dimensional theoretical model predicting the effect of the finite opening time of the diaphragm on the rate of driver depressurization and shock acceleration is proposed. The model removes the large amount of empiricism that accompanies existing models published in the literature. Model accuracy is assessed through comparisons with experiments and simulations. Limitations of and potential improvements in the model are discussed.  相似文献   

18.
Experimental measurements of shock wave propagation from explosions of C4 are presented. Each test is recorded with a high-speed digital video camera and the shock wave is visualized using background-oriented schlieren (BOS). Two different processing techniques for BOS analysis are presented: image subtraction and image correlation. The image subtraction technique is found to provide higher resolution for identifying the location of a shock wave propagating into still air. The image correlation technique is more appropriate for identifying shock reflections and multiple shock impacts in a region with complex flow patterns. The optical shock propagation measurements are used to predict the peak overpressure and overpressure duration at different locations and are compared to experimental pressure gage measurements. The overpressure predictions agree well with the pressure gage measurements and the overpressure duration prediction is within an order of magnitude of the experimental measurements. The BOS technique is shown to be an important tool for explosive research which can be simply incorporated into typical large-scale outdoor tests.  相似文献   

19.
An experimental evaluation was conducted at NASA Lewis Research Center to compare and contrast the performance of a newly developed resistance strain gage, the PdCr temperature-compensated wire strain gage, to that of a conventional high-temperature extensometry. The evaluation of the two strain measurement systems was conducted through the application of various thermal and mechanical loading spectra using a high-temperature thermomechanical uniaxial testing system equipped with quartz lamp heating. The purpose of the testing was not only to compare and contrast the two strain sensors but also to investigate the applicability of the PdCr strain gage to the testing environment typically employed when characterizing the high-temperature mechanical behavior of structural materials. Strain measurement capabilities to 800°C were investigated with a nickel base superalloy IN100 substrate material, and application to titanium matrix composite (TMC) materials was examined with the SCS-6/Ti-15-3 [0]8 system. PdCr strain gages installed by three attachment techniques—namely, flame spraying, spot welding and rapid infrared joining—were investigated.  相似文献   

20.
王军  姚熊亮  杨棣 《爆炸与冲击》2015,35(2):236-242
对浮动冲击平台提供给设备的冲击环境及舰载设备在不同冲击环境下的响应进行了数值模拟和理论分析。以美国中型浮动冲击平台为计算模型,将设备基座的冲击环境与德国规范BV 043-85进行了比较,为分析两个体系在设备抗冲击要求中谱加速度的差异,对不同舰载设备进行数值模拟计算,并通过虚拟约束边界模态方法,提出不同冲击环境下基础激励的多自由度系统响应的计算方法。数值分析及理论计算结果表明:冲击谱中谱加速度对舰载设备响应影响较小,而谱位移和谱速度对设备响应有较大影响,理论计算得到的多自由度系统响应与数值模拟结果较一致,同时在进行浮动冲击平台设计时可不考虑谱加速度对设备响应的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号