首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 359 毫秒
1.
基于二维张量积区间B样条小波,构造了一种件能良好的小波平板壳单元.在小波单元的构造过程中,用二维区间B样条小波尺度函数取代传统多项式插值,在所构造的区间B样条平面弹性单元和平面Mindlin板单元的基础上组合而成.区间B样条小波单元同时具有B样条函数数值逼近精度高和多种用于结构分析的基函数的特点.数值算例表明:与传统有限元和解析解相比,构造的小波平板壳单元具有求解精度高,单元数量和自由度少等优点.  相似文献   

2.
一维区间B样条小波单元的构造研究   总被引:1,自引:0,他引:1  
基于区间B样条小波及小波有限元理论,提出了一种区间B样条小波有限元方法。传统有限元多项式插值被一维区间B样条小波尺度函数取代,进而构造形状函数和单元。与小波Galer-kin方法不同,本文构造的区间B样条小波单元通过转换矩阵将无明确物理意义的小波插值系数转换到物理空间。转换矩阵在小波单元构造过程中起到关键作用,为了保证求解的稳定性,转换矩阵必须非奇异。构造了以区间B样条尺度函数为插值函数的一系列一维区间B样条小波单元。数值算例表明,本文构造的区间B样条小波单元与传统有限元方法相比,在求解变截面,变载荷等问题时具有收敛快和精度高等优势;有效地丰富了小波有限元法单元库。  相似文献   

3.
利用区间B样条小波的尺度函数作为有限元插值函数,从轴对称壳的能量泛函出发,由变分原理导出了单元刚度矩阵和载荷列阵,构造了区间B样条小波薄壳截锥单元.区间B样条小波单元同时具有B样条函数数值逼近精度高和多种用于结构分析的变尺度基函数的特点.数值算例表明:与传统截锥单元相比,本文构造的小波单元具有求解精度高、单元数量和自由度少等优点.  相似文献   

4.
基于区间B样条小波和广义变分原理,提出了多变量小波有限元法,构造了一种新的薄板多变量小波有限单元.由广义变分原理推导结构的多变量有限元列式,区间B样条小波尺度函数作为插值函数构造的多变量小波有限元法中,广义应力和应变被作为独立变量进行插值,避免了传统方法中应力应变求解的微分运算,减小了计算误差.区间B样条小波良好的数值...  相似文献   

5.
采用小波有限元方法研究爆炸荷载作用下地下结构的动力响应,克服在模拟过程中由于材料的奇异性、地质条件的复杂性和加载的快速性出现的应力集中和计算效率低下,根据样条有限点法,构造了单向和双向区间B样条圆环扇形小波单元,用尺度函数作为插值函数;结合工程实例,通过Matlab软件编程对爆炸荷载作用地下拱形结构的动力响应进行了数值模拟,并与应用传统有限元程序模拟结果进行对比。结果表明,小波有限元用很少单元取得了较高的精度,计算效率比传统有限元提高一倍。  相似文献   

6.
薄板小波有限元理论及其应用   总被引:1,自引:0,他引:1  
利用样条小波尺度函数构造了常用的三角形和矩形薄板单元的位移函数,得到了利用小波函数表示的形函数。采用合理的局部坐标,对单元进行压缩,使单元在局部坐标区间上有其值,成功地推导出了分域的三角形和矩形薄板小波有限元列式。在此基础上,提出了弹性地基薄板的小波有限元求解方法。通过两个算例对薄板的挠度和弯矩进行了计算,数值结果表明,求解结果具有收敛快、精度高的特点。  相似文献   

7.
样条厚薄板通用矩形单元   总被引:2,自引:0,他引:2  
本文利用样条分段插值表示式,借助于最小势能原理,构造了二次样条及三次样条厚薄梁通用单元的位移模式,并推广到二维问题上去,建立了双二次样条及双三次样条厚薄板通用单元。文中给出的算例表明,这些单元均具有自由度少,连续性强,精度高的优点。  相似文献   

8.
首先采用区间五次Hermite样条函数,分别构造了三节点梁的边界和中间节点的多小波尺度函数,然后,基于小波多辨分析思想,构建了梁单元位移多尺度近似空间的基函数系;最后,采用最小势能原理,得到弯曲梁的平衡方程,从而构造了区间五次Hermite样条多小波Euler-Bernoulli梁单元。算例结果表明,该小波单元可通过改变尺度来重新划分网格,从而可自由调节单个小波单元的计算精度,其计算精度与在相同网格划分下采用传统三节点Hermite梁单元计算的完全一致;与其它小波单元相比较,该小波单元具有计算简单明了,物理意义明确,易于理解的特点。  相似文献   

9.
本文讨论了样条分段(分片)插值,给出了插值基函数的显式及B样条表达式,使得样条插值在局部单元上完成,并用于有限元分析,建立了样条矩形单元。用样条矩形单元求解问题对,可套用有限元的现成计算程序,处理各类边界条件及区域内部的约束条件,此外对于非均匀划分的单元网格,阶梯形边界形状的使用也较方便灵活。  相似文献   

10.
基于位移插值的Voronoi单元有限元方法   总被引:3,自引:0,他引:3  
Voronoi单元有限元法是模拟颗粒增强复合材料非常先进有效的数值方法之一.为了克服它在构造插值函数时的困难,本文通过有限覆盖技术,对Voronoi单元进行了改进,提出了基于位移插值的Voronoi单元有限元方法,该方法的优点是只要知道夹杂中心点位置和Voronoi单元节点坐标,经过三次数学覆盖,即可形成Voronoi单元的位移插值函数.该方法形函数构造简单,容易实施.最后给出了数值模拟算例,并与现有的方法进行了比较.  相似文献   

11.
Based on B-spline wavelet on the interval (BSWI), two classes of truncated conicalshell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conicalshell element and BSWI moderately thick truncated conical shell element with independent slope-deformation interpolation. In the construction of wavelet-based element, instead of traditionalpolynomial interpolation, the scaling functions of BSWI were employed to form the shape functionsthrough the constructed elemental transformation matrix,and then construct BSWI element viathe variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkinmethod, the elemental displacement field represented by the coefficients of wavelets expansionwas transformed into edges and internal modes via the constructed transformation matrix. BSWIelement combines the accuracy of B-spline function approximation and various wavelet-basedelements for structural analysis. Some static and dynamic numerical examples of conical shellswere studied to demonstrate the present element with higher efficiency and precision than thetraditional element.  相似文献   

12.
Two kinds of wavelet-based elements have been constructed to analyze the stability of plates and shells and the static displacement of 3D elastic problems.The scaling functions of B-spline wavelet on the interval(BSWI) are employed as interpolating functions to construct plate and shell elements for stability analysis and 3D elastic elements for static mechanics analysis.The main advantages of BSWI scaling functions are the accuracy of B-spline functions approximation and various wavelet-based elements for ...  相似文献   

13.
A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.  相似文献   

14.
提出了基于提升方案的自适应算子自定义小波有限元法,构造了一种新的算子自定义小波薄板单元。建立二维Hermite型有限元多分辨空间和两尺度关系,并由广义变分原理推导薄板结构关于尺度函数和小波函数的内积关系式,即算子。为满足算子正交性,提出基于提升方案的算子自定义小波单元的构造方法,其优点在于可根据问题的需要来设计具有期望特性的小波基。提出基于两尺度误差的自适应算子自定义小波有限元方法,通过向大于误差阈值的局域添加算子自定义小波,实现薄板结构问题的高效求解。算子自定义小波有限元法节省了重新划分网格或提高插值函数的阶次所带来的大量有限元前处理时间,并且实现薄板问题的高效解耦运算。  相似文献   

15.
A new crack detection method is proposed for detecting crack location and depth in a shaft. Rotating Rayleigh-Euler and Rayleigh-Timoshenko beam elements of B-spline wavelet on the interval (BSWI) are constructed to discretize slender shaft and stiffness disc, respectively. According to linear fracture mechanics theory, the localized additional flexibility in crack vicinity can be represented by a lumped parameter element. The cracked shaft is modeled by wavelet-based elements to gain precise frequencies. The first three measured frequencies are used in crack detection process and the normalized crack location and depth are detected by means of genetic algorithm. To investigate the robustness and accuracy of the proposed method, some numerical examples and experimental cases of cracked shaft are conducted. It is found that the method is capable of detecting crack in a shaft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号