首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shock wave attenuation in polyurethane foams is investigated experimentally and numerically. This study is a part of research project regarding shock propagation in polyurethane foams with high-porosities = 0.951 ~ 0.977 and low densities of ρc = 27.6 ~55.8 kg/m3. Sixty Millimeter long cylindrical foams with various cell numbers and foam insertion condition were installed in a horizontal shock tube of 50 mm i.d. and 5.4 mm in length. Results of pressure measurements in air/foam combination are compared with CFD simulation solving the one-dimensional Euler equations. In the case of a foam B fixed on shock tube wall, pressures at the shock tube end wall increases relatively slowly comparing to non-fixed foam, free to move and a foam A fixed on shock tube wall. This implies that elastic inertia hardly contributes to pressure build up. Pressures behind a foam C fixed on shock tube wall decrease indicating that shock wave is degenerated into compression wave. Dimensionless impulse and attenuation factor decrease as the initial cell number increases. The momentum loss varies depending on cell structure and cell number.  相似文献   

2.
The dynamic compressive stress-strain behavior of a rigid polyurethane foam with four values of density (78, 154, 299, and 445 kg/m3) has been determined in the strain-rate range of 1000–5000 s−1. A pulse shaping technique was used with a split Hopkinson pressure bar to ensure homogeneous deformation in the foam specimens under dynamic compression. Dynamic stress equilibrium in the specimen was monitored during each experiment using piezoelectric force transducers mounted close to the specimen end-faces. Quasi-static experiments were also performed to demonstrate rate effects. Experimental results show that both the quasistatic and the dynamic stress-strain curves of the foam exhibit linear elasticity at small strains until a peak is reached. After the peak, the stress-strain curves have a plateau region followed by a densification region. The peak stress is strain-rate sensitive and depends on the square of the foam density.  相似文献   

3.
泡沫铝合金动态力学性能实验研究   总被引:6,自引:0,他引:6  
利用分离式霍布金森压杆(SHPB)实验技术和MTS材料实验机对两组不同孔径、不同密度的开孔泡沫铝合金进行了准静态和动态压缩实验研究。实验结果表明:泡沫铝合金的静态和动态变形过程均具有泡沫材料变形的三个阶段特征。开孔泡沫铝合金的变形是均匀变化过程,并不出现局部的变形带。与相对密度对力学性能的影响相比,孔径大小的影响可以忽略不计。在考察的应变率范围内,屈服应力对应变率并不很敏感。  相似文献   

4.
通孔泡沫铝的动态压缩行为   总被引:4,自引:0,他引:4  
在SHPB装置上对渗流法制备的通孔泡沫铝进行了动态压缩实验,研究了相对密度为0.341~0.419的通孔泡沫铝在10-3~2000 s-1应变率范围内的压缩响应特征和应变率相关性,并用扫描电镜(scanning electron microscope,SEM)分析了泡沫铝的压缩变形特征。实验结果表明,通孔泡沫铝有明显应变率效应,随应变率上升,泡沫铝流动应力提高。SEM观察结果揭示,在动态压缩下,通孔泡沫铝宏观上均匀变形,微观变形机制以泡孔横向伸展坍塌为主。  相似文献   

5.
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.  相似文献   

6.
Experiments were performed to study pressure drops in copper foams embedded in a rectangular copper channel. De-ionized water was used as the working fluid with mass fluxes of 30–200 kg/m2 s, and inlet temperature of 40–80°C. The copper foam has the porosity of 0.88 and the pore densities of 30, 60 and 90 ppi (pores per inch). Both single-phase liquid flow and boiling two-phase flow are studied. Effects of mass fluxes, vapor mass qualities, and average pore diameters of metallic foams are investigated. It is found that friction factors for the single-phase liquid flow are mainly dependent on the Reynolds number and the average pore diameter of metallic foams. The friction factors are decreased with increases in the Reynolds numbers, and will approach 0.22 at high Reynolds numbers. For the boiling two-phase flow, two-phase pressure drops are increased with increases in the outlet vapor mass qualities, mass fluxes, and ppi values. The two-phase multiplier is increased with increases in the outlet vapor mass qualities and mass fluxes, and it is decreased with increases in the Martinelli parameter and will attain a constant value depending on the mass fluxes. The larger the mass fluxes, the larger the constant value is. An experimental correlation considering the effects of vapor mass qualities, mass fluxes, and average pore diameters of metallic foams is recommended, showing good accuracy to predict the two-phase pressure drops in metallic foams.  相似文献   

7.
The purpose of the present investigation is to analyze the phenomenon of shock wave formation in gas-liquid foams and to explain the qualitative differences which are found when comparing results from shock tube experiments performed with foams and bubbly liquids. It is well known that oscillatory pressure waves in bubbly liquids may reach an amplitude twice as large as that of the original pressure impulse. However, experiments showed that pressure disturbances in foams always attenuate without significant change in the wave pressure profile. In the present study this behavior is explained by analyzing shock wave formation using the Burgers equation which is derived from the conservation laws for a bubbly liquid. It is shown that the parameter of non linearity in the Burgers equation describing wave propagation in bubbly liquids is about 40 times higher than in foams. At the same time coefficient of bulk viscosity of a foam is about 103 times greater than that of a bubbly liquid. This explains why in shock tube experiments with foams shock waves are not detected while they are easily observed when bubbly liquids are used under similar conditions.  相似文献   

8.
Large scale experiments (50 m3) have been carried out on the initiation of detonation by means of a jet of hot combustion products. The effects of hydrogen concentration (18–30% vol.), jet orifice diameter (100–400 mm), and the mixture composition in constant volume explosion chamber (25–50%) were investigated. Both high enough hydrogen concentration and large enough jet size are necessary for detonation initiation. The minimum values are within the ranges of 20 to 25% vol. H2, and of 100 to 200 mm correspondingly. A minimum ratio of jet size and mixture cell width 12–13 is required for detonation initiation.  相似文献   

9.
We conducted dynamic and quasi-static compression experiments with low-density (ρ = 120 kg/m3) epoxy foam specimens. The specimens had a 10.0-mm-square cross-section and a length of 19.3 mm. Dynamic experiments were conducted with a modified split Hopkinson pressure bar (SHPB), and the quasi-static experiments were conducted with a hydraulic load frame device (MTS-810). In both cases, the specimens were loaded from one end at a constant velocity. Equally spaced grid lines were marked on the specimens to monitor the deformation history. Digital images taken at equally spaced time intervals gave the positions of each grid line. These images showed that a constant end-face velocity V produced a compaction wave front that traveled at a constant velocity C in both dynamic and quasi-static experiments. We described these results with a shockwave analysis that used a locking solid material model.  相似文献   

10.
One-dimensional interaction between a planar shock wave and a rubber or low-porosity foam is investigated experimentally and numerically. The considered polyurethane foam is of high density (ρ c=290 kg/m3) and lowporosity (ϕ=0.76), and this corresponds to an intermediate condition between rubber and high-porosity foam. Stress-strain relations for the low-porosity foam are investigated by machine tests, which show larger deformation against compressive force and higher non-linearity in stress-strain curve as compared with rubber. Also the low-porosity foam shows a hysteresis cycle. Experiments on shock wave-foam interactions are conducted by using a shock tube. Experimental time history of the surface stress of the foam at the end of the shock tube does not show shock type stress increase, but continuous excessive stress rise can be seen, and then dumping vibration approaching to gas dynamic pressure of the reflected shock wave is followed, and the highest stress amounts about 3∼4 times of the pressure after the reflected gas dynamic shock wave. Interactive motions of gas and the low-porosity foam are analyzed using the Lagrangean coordinates system. An elastic model for a low-porosity foam is assumed to be a single elastic material with the measured stress-strain relation. Results of numerical simulations are compared with the shock tube experiments, which show essentially same stress variations with experimental results.  相似文献   

11.
将多孔介质简化为一簇变截面毛管束,根据多孔介质的颗粒直径、颗粒排列方式、孔喉尺度比及束缚水饱和度,计算出变截面毛细管的喉道半径和孔隙半径. 在考虑多孔介质喉道和孔隙中单个气泡的受力和变形基础上,利用动量守恒定理,推导出单个孔隙单元内液相的压力分布和孔隙单元两端的压差计算公式,最终得到多孔介质的压力分布计算公式. 利用长U型填砂管对稳定泡沫的流动特性进行了实验研究. 研究结果表明:稳定泡沫流动时多孔介质中的压力分布呈线性下降,影响泡沫在多孔介质中流动特性的因素包括:多孔介质的孔喉结构、泡沫流体的流量和干度、气液界面张力、气泡尺寸,其中孔喉结构和泡沫干度是影响泡沫封堵能力的主要因素.关键词: 稳定泡沫;多孔介质;变截面毛管;流动;表观粘度;压力分布;实验研究   相似文献   

12.
Trapped Gas Fraction During Steady-State Foam Flow   总被引:1,自引:0,他引:1  
Trapped or stationary gas contributes significantly to the extent of gas mobility reduction for aqueous foams. Simultaneous measurements of effluent bubble sizes and trapped gas saturation in sandstone are reported for the first time. Roughly 80% of the gas saturation in an aqueous foam is stationary at steady state in this permeable porous medium. The experiments show that as gas velocity increases, the trapped gas fraction decreases. Similarly, as injected gas–liquid ratio increases, the trapped gas fraction decreases. Hence, the absolute velocities of gas and aqueous surfactant solution are fundamental to foamed-gas mobility reduction for they help determine in situ foam texture. Effluent foam bubbles range in size from 60 to 120 μm in diameter. The smaller the effluent bubble, the smaller is the fraction of mobile gas. Scaling laws from network percolation theory are used to engender a mechanistic understanding of the various parameters identified as important in the experimental program. The closed form approimation predicts that the trapped gas fraction is a weak function of pressure gradient, foam-bubble size, and the permeability of the porous medium. Moreover, the theory reproduces well the newly obtained experimental data.  相似文献   

13.
A comprehensive study is made of the influence of the physical properties of compressible open-cell foam blocks exposed to shock-wave loading, and particularly on the pressure distribution on the shock tube walls. Seven different foams are used, with three different shock Mach numbers, and three different slab lengths. Foam properties examined include permeability, density, stiffness, tortuosity and cell characteristics. The investigations concentrate on both side-wall and back-wall pressures, and the peak pressures achieved, as well as collapse velocities of the front face and the strength and nature of the reflected shock wave. The consequences of deviations from one-dimensionality are identified; primarily those due to wall friction and side-wall leakage. The results presented are the most comprehensive and wide ranging series conducted in a single facility and are thus a significant resource for comparison with theoretical and numerical studies. The different foams show significant differences in behavior, both in terms of peak pressure and duration, depending primarily on their density and permeability.This paper was based on work presented at the 2nd International Symposium on Interdisciplinary Shock Wave Research, Sendai, Japan on March 1–3, 2005.  相似文献   

14.
An experimental investigation of a shock wave interacting with one, or several, liquid layer(s) is reported with a motivation towards first wall protection in inertial fusion energy reactor chamber design. A 12.8 mm or 6.4 mm thick water layer is suspended horizontally in a large vertical shock tube in atmospheric pressure argon and subjected to a planar shock wave of strength ranging from M = 1.34 to 3.20. For the single water layer experiments, the shock-accelerated liquid results in a significant increase in end-wall pressure loading (and impulse) compared with tests without water. The end-wall loading can be reduced by more than 50% for a given volume of water when it is divided into more than one layer with interspersed layer(s) of argon. A flash X-ray technique is employed to measure the volume fraction of the shocked water layer and multiple water layers are found to dissipate more energy through the liquid fragmentation process resulting in increased shock mitigation.  相似文献   

15.
A novel rheometer based on the U-tube technique of Saunders and Ward has been developed to determine the shear moduli of very weak gels and foams. The instrument is fully automatic and operates in both static and oscillatory modes. The change of the shear modulus, with the time, was monitored in three series of samples to illustrate the performance of the instrument. The first series comprised gelatinized maize starch aqueous suspensions ranging in starch concentration from 6% to 12%. The second was a series of gelatine aqueous solutions ranging in gelatine content from 2% to 12%. The third was two commercial samples of shaving foam. The results indicated that the instrument is particularly suitable for the study of the gelation mechanism in very weak gels as well as for the study of the stability of foams in relation to time.  相似文献   

16.
A phenomenological study of the process occurring when a plane shock wave reflected off an aqueous foam column filling the test section of a vertical shock tube has been undertaken. The experiments were conducted with initial shock wave Mach numbers in the range $1.25\le {M}_\mathrm{s} \le 1.7$ and foam column heights in the range 100–450 mm. Miniature piezotrone circuit electronic pressure transducers were used to record the pressure histories upstream and alongside the foam column. The aim of these experiments was to find a simple way to eliminate a spatial averaging as an artifact of the pressure history recorded by the side-on transducer. For this purpose, we discuss first the common behaviors of the pressure traces in extended time scales. These observations evidently quantify the low frequency variations of the pressure field within the different flow domains of the shock tube. Thereafter, we focus on the fronts of the pressure signals, which, in turn, characterize the high-frequency response of the foam column to the shock wave impact. Since the front shape and the amplitude of the pressure signal most likely play a significant role in the foam destruction, phase changes and/or other physical factors, such as high capacity, viscosity, etc., the common practice of the data processing is revised and discussed in detail. Generally, side-on pressure measurements must be used with great caution when performed in wet aqueous foams, because the low sound speed is especially prone to this effect. Since the spatial averaged recorded pressure signals do not reproduce well the real behaviors of the pressure rise, the recorded shape of the shock wave front in the foam appears much thicker. It is also found that when a thin liquid film wet the sensing membrane, the transducer sensitivity was changed. As a result, the pressure recorded in the foam could exceed the real amplitude of the post-shock wave flow. A simple procedure, which allows correcting this imperfection, is discussed in detail.  相似文献   

17.
The cell morphology and mechanical behavior of open-cell polyurethane and nickel foams are investigated by means of combined 3D X-ray micro-tomography and large scale finite element simulations. Our quantitative 3D image analysis and finite element simulations demonstrate that the strongly anisotropic tensile behavior of nickel foams is due to the cell anisotropy induced by the deformation of PU precursor during the electroplating and heat treatment stages of nickel foam processing. In situ tensile tests on PU foams reveal that the initial main elongation axis of the cells evolves from the foam sheet normal direction to the rolling direction of the coils. Finite element simulations of the hyperelastic behavior of PU foams based on real cell morphology confirm the observation that cell struts do not experience significant elongation after 0.15 tensile straining, thus pointing out alternative deformation mechanisms like complex strut junctions deformation. The plastic behavior and the anisotropy of nickel foams are then satisfactorily retrieved from finite element simulations on a volume element containing eight cells with a detailed mesh of all the hollow struts and junctions. The experimental and computational strategy is considered as a first step toward optimization of process parameters to tailor anisotropy of cell shape and mechanical behavior for applications in batteries or Diesel particulate filtering.  相似文献   

18.
A family of epoxy-based polymeric foams with various initial porosity levels was subjected to quasi-static uniaxial loading in rigid confinement (uniaxial strain) to investigate their crushability characteristics. Two issues were investigated. The first issue was the uniformity of deformation in a specimen as a function of porosity level by creating a grid of equally spaced thin stripes on the surface and by monitoring their pattern during the experiment. It was found that the higher the porosity of foam, the more non-uniform the deformation in the specimen. However, the localized non-uniform deformation did not affect the global stress-strain response, especially at large deformations. The second issue was the development of a new analysis tool, called “crushability map”. The purpose of the tool is to depict the evolution of porosity, bulk density and energy absorption as functions of applied strain, stress, and porosity. These maps can assist in characterizing the residual crushability or energy absorption capability of foams as a function of residual porosity. The maps can be used as a design tool for selection of suitable foams for a given application in conjunction with various design criteria.  相似文献   

19.
The foam material of interest in this investigation is a rigid closed-cell polyurethane foam PMDI with a nominal density of 20 pcf (320 kg/m3). Three separate types of compression experiments were conducted on foam specimens. The heterogeneous deformation of foam specimens and strain concentration at the foam–steel interface were obtained using the 3-dimensional digital image correlation (3D-DIC) technique. These experiments demonstrated that the 3D-DIC technique is able to obtain accurate and full-field large deformation of foam specimens, including strain concentrations. The experiments also showed the effects of loading configurations on deformation and strain concentration in foam specimens. These DIC results provided experimental data to validate the previously developed viscoplastic foam model (VFM). In the first experiment, cubic foam specimens were compressed uniaxially up to 60%. The full-field surface displacement and strain distributions obtained using the 3D-DIC technique provided detailed information about the inhomogeneous deformation over the area of interest during compression. In the second experiment, compression tests were conducted for cubic foam specimens with a steel cylinder inclusion, which imitate the deformation of foam components in a package under crush conditions. The strain concentration at the interface between the steel cylinder and the foam specimen was studied in detail. In the third experiment, the foam specimens were loaded by a steel cylinder passing through the center of the specimens rather than from its end surface, which created a loading condition of the foam components similar to a package that has been dropped. To study the effects of confinement, the strain concentration and displacement distribution over the defined sections were compared for cases with and without a confinement fixture.  相似文献   

20.
Liquid drop impacts on a smooth surface were studied at elevated chamber pressures to characterize the effect of gas pressure on drop spreading and splashing. Five common liquids were tested at impact speeds between 1.0 and 3.5 m/s and pressure up to 12 bars. Based on experiments at atmospheric pressure, a modification to the “free spreading” model (Scheller and Bousfield in AIChE Paper 41(6):1357–1367, 1995) has been proposed that improves the prediction accuracy of maximum spread factors from an error of 15–5%. At high chamber pressures, drop spreading and maximum spread factor were found to be independent of pressure. The splash ratio (Xu et al. in Phys Rev Lett 94:184505, 2005) showed a non-constant behavior, and a power-law model was demonstrated to predict the increase in splash ratio with decreasing impact speed in the low impact speed regime. Also, drop shape was found to affect splash promotion or suppression for an asymmetry greater than 7–8% of the equivalent drop diameter. The observations of the current work could be especially useful for the study of formation of deposits and wall combustion in engine cylinders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号