首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 202 毫秒
1.
轨道动力学快速计算是航天工程中的基础问题,广泛存在于轨道设计、空间抓捕以及深空探测等任务中.基于有限差分原理的经典数值积分算法,由于精度严重依赖小积分步长,难以满足航天器在轨快速计算需求.针对该问题,提出一种局部配点反馈迭代算法,该算法能高效解算受到初值约束和两点边值约束的轨道动力学方程.基于Picard迭代公式建立数...  相似文献   

2.
曾清红 《计算力学学报》2012,29(2):205-209,216
研究了无网格局部Petrov-Galerkin方法MLPG(Meshless Local Petrov-Galerkin Method)的并行算法与并行实现过程。将MLPG方法推广到弹性动力学问题,研究了MLPG方法中节点搜索、积分点搜索、数值积分及方程组求解等过程的并行算法,并给出了MLPG方法并行计算的具体实现过程。两个数值算例验证了MLPG并行算法的有效性;计算结果表明,MLPG方法的并行计算具有很好的并行性能和可扩展性。  相似文献   

3.
大型结构特征值问题的混合粒度并行算法   总被引:3,自引:0,他引:3  
本文提出一种求解大形结构特征值问题的粗细粒度混合并行算法:在子结构模态综合粗粒度并行算基础上,综合系统的特性值问题采用细粒度并行方式求解。细粒度并行包括子空间迭代法的子结构并行算法、雅可比分块并行计算的方法和一种Newton-Raphon迭代法在多处理器上任力均衡分配的有效策略。子空间迭代法的子结构并行计算的实施是利用子结构的刚度阵和质量阵而不必完全组集系统刚度阵和国求综合系统的特征值问题。利用雅  相似文献   

4.
变厚度圆底扁薄球壳的非线性稳定问题   总被引:5,自引:0,他引:5  
一、引言 薄壳的屈曲是一个非线性问题,其基本方程是非线性微分方程组,在数学上困难较大,若研究变厚度薄壳的屈曲问题,则难度更大。文献[1]曾提出用修正迭代法求解等厚度圆底扁薄壳屈曲问题。文献[3]用小参数法与修正迭代法联合求解了变厚度圆薄壳的大挠度问题。本文先给出变厚度圆底扁薄球壳的非线性方程组,然后用小参数法与修正迭代法结合求解在边缘均布力矩作用下的一种变厚底圆底扁薄球壳屈曲问题。  相似文献   

5.
岩质圆形隧洞围岩应力场弹塑性新解   总被引:1,自引:0,他引:1  
针对动态接触问题的有限元并行计算,提出了一种新的接触算法. 新算法引入局部拉氏 乘子技术来计算接触力. 由于同时考虑了无穿透的接触约束条件和相邻接触对的相互影响, 较之广泛使用的罚参数法,新算法使接触约束条件和系统平衡方程得到更充分的满足. 虽然 为提高接触计算精度而在局部采用了迭代技术,但算法仍然具有较高的效率,且与显式时间 积分方案完全相容. 此外,通过构造专门的区域分解方案,实现了将现有为串行程序开发的 搜索算法平滑移植到并行环境的目标. 数值算例表明,所提出的接触算法具有很好的并行性, 在保证了接触问题并行计算精度的同时,取得了满意的并行效率.  相似文献   

6.
在环境流体力学中,风场是风沙流、风雪流等自然环境特性问题研究的动力源和基础.通常采用壁湍流模型进行风场大涡模拟(large eddy simulation, LES)计算,但受到计算规模的限制使得高雷诺数风场的模拟计算难以实现.并行计算技术是解决大规模高雷诺数风场大涡模拟的关键技术之一.在不可压湍流风场的LES模拟中,压力泊松方程的并行计算技术是进行规模并行计算的困难点.根据风场流动模拟计算的特点,采用水平网格等距而垂直于地面网格非等距,在解决规模并行计算中求解压力泊松方程的难点问题时,利用FFT解耦三维泊松方程使其变为垂向的一维三对角方程,并利用可并行的三对角方程PDD求解技术,可建立三维泊松方程的直接并行求解技术.结合其它容易并行的动量方程计算,本文建立风场LES模拟的并行直接求解方法 (parallel direct method-LES, PDM-LES).在超级计算机上对新方法进行并行效率测试,并行计算效率达到90%.新的方法可用于进行湍流风场大涡模拟的大规模并行计算.计算结果表明,湍流风场瞬时速度分布近壁面存在条带状的拟序结构,平均场的速度分布符合速度对数律特性,风场湍流特性基本合理.  相似文献   

7.
数值流形方法(NMM)因其特有的双覆盖系统(数学覆盖和物理覆盖)在域离散方面具有独特的优势,而精细时间积分法则具有精度高、无条件稳定、无振荡以及计算结果不依赖于时间步长等特点。发展了用于研究二维瞬态热传导问题的精细积分NMM。结合待求问题的控制方程和边界条件,并基于修正变分原理导出了NMM的总体方程,给出了求解此类时间相依方程的精细时间积分及空间积分策略,选取了两个典型算例对方法的有效性进行了验证,结果表明本文方法可以高效高精度地求解瞬态热传导问题。  相似文献   

8.
数值流形方法(NMM)因其特有的双覆盖系统(数学覆盖和物理覆盖)在域离散方面具有独特的优势,而精细时间积分法则具有精度高、无条件稳定、无振荡以及计算结果不依赖于时间步长等特点。发展了用于研究二维瞬态热传导问题的精细积分NMM。结合待求问题的控制方程和边界条件,并基于修正变分原理导出了NMM的总体方程,给出了求解此类时间相依方程的精细时间积分及空间积分策略,选取了两个典型算例对方法的有效性进行了验证,结果表明本文方法可以高效高精度地求解瞬态热传导问题。  相似文献   

9.
朱昌允  秦国良  徐忠 《应用力学学报》2012,29(3):247-251,350
本文探讨了采用Chebyshev谱元方法结合并行计算求解三维区域的Helmholtz方程问题。首先应用变分方法,得到了带有第一类边界条件的三维区域Helmholtz方程的弱形式。然后在三维的标准单元内,采用Chebyshev正交多项式展开函数u和试函数v,并且将其带入弱形式方程,通过积分,得到单元刚度矩阵;通过合成单元刚度矩阵,得到总体矩阵。最后通过基于MPI的并行计算,求解了以总体矩阵为系数的方程组,得到了Helmholtz方程的数值解,和解析解对比表明了数值解的正确性,并且数值解具有8阶精度。在并行求解方程组过程中,充分利用矩阵的对称性和矢量存储来获取上三角元素,这大幅的节约了存储量和计算进程间的通讯量,获得的并行效率可达76.6%。  相似文献   

10.
包芸  习令楚 《力学学报》2020,52(3):656-662
在环境流体力学中,风场是风沙流、风雪流等自然环境特性问题研究的动力源和基础. 通常采用壁湍流模型进行风场大涡模拟(large eddy simulation, LES)计算,但受到计算规模的限制使得 高雷诺数风场的模拟计算难以实现. 并行计算技术是解决大规模高雷诺数风场大涡模拟的关键技术之一. 在不可压湍流风场的LES模拟中,压力泊松方程的并行计算技术是进行规模并行计算的困难点. 根据风场流动模拟计算的特点,采用水平网格等距而垂直于地面网格非等距,在解决规模并行计算中求解压力泊松方程的难点问题时,利用FFT解耦三维泊松方程使其变为垂向的一维三对角方程, 并利用可并行的三对角方程PDD求解技术,可建立三维泊松方程的直接并行求解技术. 结合其它容易并行的动量方程计算,本文建立风场LES模拟的并行直接求解方法(parallel direct method-LES, PDM-LES). 在超级计算机上对新方法进行并行效率测试,并行计算效率达到90${\%}$. 新的方法可用于进行湍流风场大涡模拟的大规模并行计算. 计算结果表明,湍流风场瞬时速度分布近壁面存在条带状的拟序结构,平均场的速度分布符合速度对数律特性,风场湍流特性基本合理.   相似文献   

11.
In this work, a parallel finite volume scheme on unstructured meshes is applied to fluid flow for multidimensional hyperbolic system of conservation laws. It is based on a block-based adaptive mesh refinement strategy which allows quick meshing and easy parallelisation. As a continuation and as an extension of a previous work, the useful numerical density of entropy production is used as mesh refinement criterion combined with a local time-stepping method to preserve the computational time. Then, we numerically investigate its efficiency through several test cases with a confrontation with exact solution or experimental data.  相似文献   

12.
We developed a framework for a distributed-memory parallel computer that enables dynamic data management for adaptive mesh refinement and load balancing. We employed simple data structure of the building cube method (BCM) where a computational domain is divided into multi-level cubic domains and each cube has the same number of grid points inside, realising a multi-level block-structured Cartesian mesh. Solution adaptive mesh refinement, which works efficiently with the help of the dynamic load balancing, was implemented by dividing cubes based on mesh refinement criteria. The framework was investigated with the Laplace equation in terms of adaptive mesh refinement, load balancing and the parallel efficiency. It was then applied to the incompressible Navier–Stokes equations to simulate a turbulent flow around a sphere. We considered wall-adaptive cube refinement where a non-dimensional wall distance y+ near the sphere is used for a criterion of mesh refinement. The result showed the load imbalance due to y+ adaptive mesh refinement was corrected by the present approach. To utilise the BCM framework more effectively, we also tested a cube-wise algorithm switching where an explicit and implicit time integration schemes are switched depending on the local Courant-Friedrichs-Lewy (CFL) condition in each cube.  相似文献   

13.
Embedded Boundary Methods (EBMs) are often preferred for the solution of Fluid-Structure Interaction (FSI) problems because they are reliable for large structural motions/deformations and topological changes. For viscous flow problems, however, they do not track the boundary layers that form around embedded obstacles and therefore do not maintain them resolved. Hence, an Adaptive Mesh Refinement (AMR) framework for EBMs is proposed in this paper. It is based on computing the distance from an edge of the embedding computational fluid dynamics mesh to the nearest embedded discrete surface and on satisfying the y+ requirements. It is also equipped with a Hessian-based criterion for resolving flow features such as shocks, vortices, and wakes and with load balancing for achieving parallel efficiency. It performs mesh refinement using a parallel version of the newest vertex bisection method to maintain mesh conformity. Hence, while it is sufficiently comprehensive to support many discretization methods, it is particularly attractive for vertex-centered finite volume schemes where dual cells tend to complicate the mesh adaptation process. Using the EBM known as FIVER, this AMR framework is verified for several academic FSI problems. Its potential for realistic FSI applications is also demonstrated with the simulation of a challenging supersonic parachute inflation dynamics problem.  相似文献   

14.
In this paper we describe a time-splitting method for the three-dimensional shallow water equations. The stability of this method neither depends on the vertical diffusion term nor on the terms describing the propagation of the surface waves. The method consists of two stages and requires the solution of a sequence of linear systems. For the solution of these systems we apply a Jacobi-type iteration method and a conjugate gradient iteration method. The performance of both methods is accelerated by a technique based on smoothing. The resulting method is mass-conservative and efficient on vector and parallel computers. The accuracy, stability and computational efficiency of this method are demonstrated for wind-induced problems in a rectangular basin.  相似文献   

15.
An unstructured dynamic mesh adaptation and load balancing algorithm has been developed for the efficient simulation of three‐dimensional unsteady inviscid flows on parallel machines. The numerical scheme was based on a cell‐centred finite‐volume method and the Roe's flux‐difference splitting. Second‐order accuracy was achieved in time by using an implicit Jacobi/Gauss–Seidel iteration. The resolution of time‐dependent solutions was enhanced by adopting an h‐refinement/coarsening algorithm. Parallelization and load balancing were concurrently achieved on the adaptive dynamic meshes for computational speed‐up and efficient memory redistribution. A new tree data structure for boundary faces was developed for the continuous transfer of the communication data across the parallel subdomain boundary. The parallel efficiency was validated by applying the present method to an unsteady shock‐tube problem. The flows around oscillating NACA0012 wing and F‐5 wing were also calculated for the numerical verification of the present dynamic mesh adaptation and load balancing algorithm. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
High-Performance Computing (HPC) systems and Computational Fluid Dynamics (CFD) have made significant progress in recent years; however, as the basis of the large-scale parallel computing, the massive grid generation of billions of cells has become a bottleneck problem. In this study, a parallel grid generation technique is proposed to generate large-scale mixed grids with arbitrary cell types and scales. The basic idea of our method is analogous to the global mesh refinement technique. An initial coarse grid with arbitrary cell types is regarded as a background mesh which is partitioned into subzones, and subzones are assigned onto different CPU cores. After the cells and faces in each subzone are split, the inserted new points of the solid wall are projected onto the original CAD entities to preserve the geometry accurately. Finally, the tangled cells caused by the projection in the boundary layer are untangled by a local Radial Basis Function mesh deformation technique. Furthermore, a parallel partition approach and an efficient wall distance computing technique for massive grids are developed also to shorten the preprocessing time. The tests show that the preprocessing efficiency has been increased by two or three orders compared with traditional methods. Billions of grids are generated for the AIAA JSM high-lift model and the Chinese CHN-T1 transport model to test the ability of the parallel grid generation technique. The maximum scale up to 19 billion mixed elements is generated using 16 384 CPU cores in parallel, and the mesh quality is acceptable for CFD simulations.  相似文献   

17.
面向大规模工程计算等数值模拟领域,提出了一种支持复杂几何模型的大规模四面体网格并行生成方法。该方法以复杂几何模型作为输入,首先采用串行网格生成方法生成初始四面体网格,然后通过两级区域分解方法将初始网格分解为多个子网格并分配到相应的进程中,进程间并行地提取出子网格的表面网格,并基于几何模型对面网格进行贴体加密,最后对加密后的面网格采用Delaunay方法重新生成四面体网格,该方法可以更好地适应高性能计算机体系结构,较好地克服了并行方法中并行性能和网格质量不能兼顾的问题。对三峡大坝模型进行测试和验证,证明该方法具有良好的并行效率和可扩展性,可以在数万处理器核上并行生成数十亿高质量四面体网格。  相似文献   

18.
The vertex solution for estimation on the static displacement bounds of structures with uncertain-but-bounded parameters is studied in this paper. For the linear static problem, when there are uncertain interval parameters in the stiffness matrix and the vector of applied forces, the static response may be an interval. Based on the interval operations, the interval solution obtained by the vertex solution is more accurate and more credible than other methods (such as the perturbation method). However, the vertex solution method by traditional serial computing usually needs large computational efforts, especially for large structures. In order to avoid its disadvantages of large calculation and much runtime, its parallel computing which can be used in large-scale computing is presented in this paper. Two kinds of parallel computing algorithms are proposed based on the vertex solution. The parallel computing will solve many interval problems which cannot be resolved by traditional interval analysis methods.  相似文献   

19.
自适应一致性高阶无单元伽辽金法   总被引:5,自引:4,他引:1  
近来提出的一致性高阶无单元伽辽金法通过导数修正技术大幅度减少了所需积分点数目,并能够精确地通过线性和二次分片试验,显著改善标准无单元伽辽金法的计算效率、精度和收敛性.本文在此基础之上,充分利用无单元法易于在局部区域添加节点的优势,发展了一致性高阶无单元伽辽金法的h型自适应分析方法.根据应变能密度梯度该方法自适应地确定需节点加密的区域,基于背景积分网格的局部多层细化要求生成新的计算节点,同时考虑了节点分布由密到疏渐进过渡的情形.采用相邻两次计算的应变能的相对误差作为自适应过程的停止准则,将所发展自适应无网格法应用于由几何外形、边界外载和体力等因素造成的应力集中问题的计算分析.数值结果表明,所发展方法能够自适应地对高应力梯度区域进行节点加密,自动给出合理的计算节点分布.与已有的标准无网格法的自适应分析相比,所发展方法在计算效率、精度和应力场光滑性等方面均展现出显著优势.与采用节点均匀分布的一致性高阶无单元伽辽金法相比,它大幅度地减少了计算节点数目,有效提高了一致性高阶无单元伽辽金法在分析应力集中等存在局部高梯度问题时的计算效率和求解精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号