首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fatigue cracking tests of a solder joint were carried out using in-situ scanning electron microscopy (SEM) technology under tensile and bending cyclic loadings. The method for predicting the fatigue life is provided based on the fatigue crack growth rate of the solder joint. The results show that the effect of the loading type on the fatigue crack growth behavior of a solder joint cannot be ignored. In addition, the finite element analysis results help quantitatively estimate the response relationship between solder joint structures. The fatigue crack initiation life of a solder joint is in good agreement with the fatigue life (N50%) of a totally electronic board with 36 solder joints.  相似文献   

2.
低成本基板倒装焊底充胶分层裂缝扩展研究   总被引:2,自引:0,他引:2  
采用MIL-STD-883C热循环疲劳加载标准,通过电学检测方法测定了B型和D型两种倒装焊封装焊点寿命。并使用无损声学C-SAM高频超声显微镜技术观测这两种倒装焊封装在焊点有无断裂两种情况时芯片/底充胶界面的分层和扩展,计算得到分层裂缝扩展速率。在有限元模拟中采用粘塑性和时间相关模量描述了SnPb焊点和底充胶的力学行为。使用裂缝尖端附近小矩形路径J积分方法作为断裂力学参量得到不同情况下的界面分层裂缝顶端附近的能量释放率。然后由实验裂缝扩展速率和有限元模拟给出的能量释放率得到可作为倒装焊封装可靠性设计依据的Par—is半经验方程。  相似文献   

3.
提出了一种适用于黏弹性界面裂纹问题的增量“加料” 有限元方法. 利用弹性界面裂纹尖端位移场的解答,通过对应原理和拉普拉斯逆变换近似方法,得到了黏弹性界面裂纹的尖端位移场. 用该位移场构造了黏弹性界面裂纹“加料” 单元和过渡单元位移模式,推导了增量“加料” 有限元方程,求解有限元方程可获得应力强度因子和应变能释放率等断裂参量. 建立了典型黏弹性界面裂纹平面问题“加料” 有限元模型,计算结果表明,对于弹性/黏弹性界面裂纹和黏弹性/黏弹性界面裂纹,该方法都能得到相当精确地断裂参量,并能很好地反映蠕变和松弛特性,可推广应用于黏弹性界面断裂问题的计算分析.   相似文献   

4.
跌落冲击载荷下焊锡接点金属间化合物层的动态开裂   总被引:1,自引:0,他引:1  
安彤  秦飞 《固体力学学报》2013,34(2):117-124
跌落冲击载荷作用下,含铅焊锡接点与无铅焊锡接点的破坏模式明显不同,而导致这种差异的原因目前尚不明朗。本文提出了一种可用于模拟焊锡接点在跌落冲击载荷下破坏行为的有限元模型,此模型中,金属间化合物(IMC)与焊料间的界面采用粘性区模型(CZM)来模拟其损伤开裂过程,而IMC层内的破坏程度则通过计算其能量释放率来判断。通过对板级封装跌落冲击过程的数值模拟发现,与无铅焊锡接点(Sn3.5Ag)相比,含铅焊锡接点(Sn37Pb)与IMC间的CZM层更容易发生损伤破坏,而该层的开裂会减小IMC层的应力,即降低了其内部的裂纹驱动力,从而缓解了IMC层裂纹的起始和扩展。  相似文献   

5.
The finite element modeling and fracture mechanics concept were used to study the interfacial fracture of a FRP-concrete hybrid structure. The strain energy release rate of the interfacial crack was calculated by the virtual crack extension method. It is shown that the crack growth has three phases, namely, cracking initiation, stable crack growth and unstable crack propagation. The effects of geometric and physical parameters of the hybrid beam on the energy release rate were considered. These parameters include Young’s moduli of the FRP, the concrete and the adhesive, thickness of the FRP plate and adhesive, and the distance of FRP plate end from the beam end. The numerical results show that the energy release rate of the interfacial crack is influenced considerably by these parameters. The present investigation can contribute to the mechanism understanding and engineering design of the hybrid structures.  相似文献   

6.
This work analyzes the elastic interaction between two spherical-cap cracks present along the outer surface of a hollow particle embedded in a dissimilar medium under remote uniaxial tensile loading. A semi-analytical approach based on an enriched Galerkin method is adopted to determine stress and deformation fields as functions of particle wall thickness and cracks’ configuration. The present analysis is limited to multiple interfacial spherical-cap cracks; that is, crack propagation is restrained to the particle-matrix interface and possibility of crack kinking in the matrix is not considered. Interfacial crack growth characteristics, conditions for stable crack propagation, equal crack growth, and shielding are established through energy release rate analysis. The study is relevant to the analysis of tensile and flexural failure of syntactic foams used in marine and aerospace applications. Results specialized to glass-vinyl ester syntactic foams demonstrate that particle wall thickness can be used to control crack stability and growth characteristics as well as tailoring the magnitude of the shielding phenomenon. Predictions are compared to finite element findings for validation and to results for penny-shaped cracks to elucidate the role of crack curvature.  相似文献   

7.
论文将使用一种界面单元来解决二维裂纹的静态扩展问题.这种界面单元基于虚拟裂纹闭合法,利用商业有限元软件ABAQUS的用户自定义单元UEL功能,发展为界面断裂单元,计算应变能释放率(GⅠ和GⅡ).在裂纹尖端的两个节点间设置一个特殊刚度的弹簧,并引入哑节点计算裂纹尖端后面的张开位移和裂纹尖端前面的虚拟裂纹扩展量.采用这种单元计算应变能释放率时不需要使用奇异单元或折叠单元,不会出现收敛问题,也不需要复杂的后续处理.因此,采用这种断裂单元分析二维裂纹扩展问题是方便的、高效率的,而且也能得到可靠的精度.  相似文献   

8.
The quasistatic growth of straight interface cracks in thermally loaded brittle multiphase solids consisting of two circular segments of brittle materials with different thermoelastic properties which are glued together at the interface with a special glass seal has been investigated. The resulting mixed boundary-value problems of the stationary plane thermoelasticity have been solved by applying the finite element method. Moreover, fracture mechanical data like crack surface displacements and strain energy release rates governing the propagation behavior of a quasistatic extending thermal interface crack have been calculated. The data obtained have been compared with the results of special cooling experiments in multiphase composite structures in which curved thermal cracks in one of the circular segments occur.  相似文献   

9.
For finite strain dynamics a variational model of crack evolution is formulated within the generalized oriented continuum methodology. In this approach position- and direction-dependent deformation and strain measures are used to describe the (macro)motion of the body with defects, which may evolve relative to the moving body. The inelastic behaviour of continua with evolving defects is represented by phenomenological equations including the transversal crack evolution. A strain-induced crack propagation criterion is defined by the difference between the strain energy release rate and the rate of the surface energy of the crack. A possible nucleation of microcracks in terms of the average drag coefficient of the crack configuration is proposed. Based on the crack growth criterion presented in this paper, the kinking of cracks is investigated using variational concepts. A constitutive damage model of Kachanov's type accounting for the crack density is derived in terms of the free energy functional and a dissipation potential.  相似文献   

10.
The concept of weak discontinuity is extended to functionally graded piezoelectric bi-material interface, and fracture analysis for the weak discontinuous interface is performed by the methods of Fourier integral transform and Cauchy singular integral equation. Numerical results of the total energy release rate (TERR) and the mechanical strain energy release rate (MSERR) are obtained to show the effects of non-homogeneity parameters, geometrical parameters and loads. Parametric studies yield three conclusions: (1) To reduce the weak-discontinuity of the interface is beneficial to resisting interfacial fracture. The effect of the weak-discontinuity of the interface on TERR and MSERR still depends on the strip width. The wider the strip, the more sensitive the TERR and MSERR will be to the weak-discontinuity of the interface. (2) To predict the effect of electric load on crack propagation, MSERR is more appropriate than TERR to be used as a fracture parameter. To predict the effect of mechanical load on crack propagation, both of them could be used as fracture parameters, and MSERR is more conservative. (3) Mechanical load and negative electric displacement load would promote crack propagation, but positive electric displacement load would retard it. For the structure applied by combined mechanical and positive electric displacement loads, crack propagation may be impeded by appropriately selecting the strip width and the ratio of non-homogeneity parameters.  相似文献   

11.
Solution of Cauchy-type singular integral equations permits the evaluation of the fracture parameters at the crack tips very accurately. However, it does not permit the determination of the crack opening and sliding displacements while ensuring no crack surface interpenetration unless the location of the contact zone is known a priori. In order to circumvent this shortcoming, this study presents a solution method based on the Hadamard-type singular integral equations to obtain the crack opening and sliding displacements directly while enforcing the appropriate conditions to prevent interpenetration. Furthermore, the crack opening displacements are physically more meaningful and readily validated against the finite element analysis predictions. The numerical solutions of the hypersingular integral equations provide not only crack opening and sliding displacements directly but also the stress intensity factors and energy release rates. Also, the behavior of the energy release rate is examined as the cohesive crack located parallel to the interface approaches the interface from either the soft or the stiff side of the interface. The limiting value of the energy release rate is established by considering an interface crack. As the cohesive crack approaches the interface from either side of the interface, the energy release rate approaches to that of the interface crack. However, the length of contact zone between the cohesive crack surfaces under uniform shear loading does not approach to that of the interface crack.  相似文献   

12.
塑料球栅阵列封装PBGA的可靠性分析中,考虑封装过程中SnAgCu焊料与铜焊盘界面间产生的金属间化合物(Intermetallic compound,IMC)的影响,并引入内聚力模型(Cohesive zone model, CZM),利用ANSYS对热循环作用下焊点/IMC界面的脱层开裂情况进行研究。结果表明:热循环作用下,在封装器件中焊点承受较大的应力应变,且远离中心的外侧焊点具有比内侧焊点更大的应力应变。IMC的存在极大的降低了焊点的可靠性。界面分层最先发生在最外侧的IMC/焊点界面的两端,随着热循环次数的增加,分层逐渐沿着界面两端向里扩展。在热循环的前几个阶段,各个界面的最大损伤值增大较快,随着热循环的继续加载,界面最大损伤值逐渐趋于稳定。整个过程中四号焊点界面的损伤值始终最大。  相似文献   

13.
孙洋  王彪  王巧云  刘马宝 《力学学报》2015,47(5):772-778
建立了智能涂层的两相模型与三相模型,基于能量准则分别用这两种模型研究了基体裂纹达到涂层界面后的穿越/偏转行为. 用有限元法分析了相对裂纹扩展长度、弹性错配参数及界面层厚度对偏转裂纹与穿越裂纹能量释放率之比的影响,结果表明当基体裂纹到达驱动层与基体界面时,能量释放率之比不仅与基体和驱动层之间的弹性错配相关,而且当驱动层较薄时对驱动层与传感层之间的弹性错配亦有较强的依赖性. 此外,随着驱动层厚度的增加,能量释放率之比对驱动层与传感层之间的弹性错配的依赖性逐渐降低. 通过与实验结果相比,建立的模型能够较好的解释基体裂纹在界面的扩展行为,可用于智能涂层裂纹传感器的优化设计.   相似文献   

14.
温度循环应力剖面对QFP焊点热疲劳寿命的影响   总被引:5,自引:0,他引:5  
采用统一型粘塑性Anand本构方程描述了QFP(四方扁平封装)焊点的粘塑性力学行为,利用有限元分析软件建立组装在印制电路板上QFP的有限元模型,通过研究焊点内部总应变范围的变化进而研究温度循环应力剖面各个参数对焊点热疲劳寿命的影响,为设计合理的温度循环应力剖面提供了理论依据。  相似文献   

15.
On the fracture toughness of ferroelastic materials   总被引:2,自引:0,他引:2  
The toughness enhancement due to domain switching near a steadily growing crack in a ferroelastic material is analyzed. The constitutive response of the material is taken to be characteristic of a polycrystalline sample assembled from randomly oriented tetragonal single crystal grains. The constitutive law accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger effects, reverse switching, and strain reorientation that can occur in these materials due to the non-proportional loading that arises near a propagating crack. Crack growth is assumed to proceed at a critical level of the crack tip energy release rate. Detailed finite element calculations are carried out to determine the stress and strain fields near the growing tip, and the ratio of the far field applied energy release rate to the crack tip energy release rate. The results of the finite element calculations are then compared to analytical models that assume the linear isotropic K-field solution holds for either the near tip stress or strain field. Ultimately, the model is able to account for the experimentally observed toughness enhancement in ferroelastic ceramics.  相似文献   

16.
Using the complex variable function method and the conformal mapping technique,the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface.Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable.The results can be reduced to the well-known solutio...  相似文献   

17.
Based on the three-phase model, the propagation behavior of a matrix crack in an intelligent coating system is investigated by an energy criterion. The effect of the elastic mismatch parameters and the thickness of the interface layer on the ratio of the energy release rate for infinitesimal deflected and penetrated crack is evaluated with the finite element method. The results show that the ratio of the energy release rates strongly depends on the elastic mismatch α1between the substrate and the driving layer.It also strongly depends on the elastic mismatch α2between the driving layer and the sensing layer for a thinner driving layer when a primary crack reaches an interface between the substrate and the driving layer. Moreover, with the increase in the thickness of the driving layer, the dependence on α2gradually decreases. The experimental observation on aluminum alloys monitored with intelligent coating shows that the established model can better explain the behavior of matrix crack penetration and can be used in optimization design of intelligent coating.  相似文献   

18.
The effect of thermomechanically induced phase transformation on the driving force for crack growth in polycrystalline shape memory alloys is analyzed in an infinite center-cracked plate subjected to a thermal actuation cycle under mechanical load in plain strain. Finite element calculations are carried out to determine the mechanical fields near the static crack and the crack-tip energy release rate using the virtual crack closure technique. A substantial increase of the energy release rate – an order of magnitude for some material systems – is observed during the thermal cycle due to the stress redistribution induced by large scale phase transformation. Thus, phase transformation occurring due to thermal variations under mechanical load may result in crack growth if the crack-tip energy release rate reaches a material specific critical value.  相似文献   

19.
A novel in situ transmission electron microscopy (TEM) bending method using a nano-cantilever specimen that includes a naturally sharp pre-crack at the interface between a 500 nm-thick SiN layer and a 200 nm-thick Cu layer on a Si substrate is developed in order to precisely characterize the fracture toughness of the interface in nanoscale multilayers. By fabricating a perpendicular nanoscale notch in the SiN layer close to the horizontal Cu/SiN interface, a sharp pre-crack is successfully introduced at the Cu/SiN interface. In addition, by changing the relative position of the notch with respect to the fixed end of the specimen, both the instant and continuous interface crack propagation behaviors could be in situ observed using TEM. Finite element analysis shows that the crack propagation from the sharp pre-crack is dominated by a singular stress field within a region 100 nm from the crack tip under a mixed-mode state in all specimens. On the other hand, the fracture toughness represented by the critical energy release rate for the start of crack propagation along the Cu/SiN interface in all specimens is determined through a compliance method and shows good agreement with an average value of 7.1 J/m2. This indicates the robust reliability and high precision for characterizing the fracture toughness of the interface in nanoscale multilayers.  相似文献   

20.
传统的研究含缺口构件的疲劳的方法是将疲劳启裂和疲劳裂纹扩展两个过程完全独立起来,用不同的方法来模拟,相互间并没有定量的关系。本文是基于最新发展的多轴疲劳损伤理论,建立了一种适用于各种载荷条件下的疲劳启裂和裂纹扩展的普适方法。根据从弹塑性分析中得到的应力应变,确定疲劳损伤模型,建立能够预测疲劳启裂、裂纹扩展速率和扩展方向的新方法。整个模拟可以分为两步:弹-塑性应力分析得到材料的应力应变分布;再运用一个通用的疲劳准则预测疲劳裂纹启裂和裂纹扩展。通过对1070号钢含缺口试件的疲劳全寿命预测,得到了与实验非常吻合的模拟结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号