首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroelastic behavior of a cracked piezoelectric ceramics plate subjected to four cases of combined mechanical-electrical loads is analyzed. The integral transform method is applied to convert the problem involving an impermeable anti-plane crack to dual integral equations. Solving the resulting equations, the explicit analytic expressions for electroelastic field along the crack line and the intensity factors of relevant quantities near the crack tip and the mechanical strain energy release rate are obtained. The known results for an infinite piezoelectric ceramics plane containing an impermeable anti-plane crack are recovered from the present results only if the thickness of the plate h → ∞. Biography: LI Xian-fang (1964-)  相似文献   

2.
胡克强  仲政  金波 《力学季刊》2003,24(3):371-378
基于三维弹性理论和压电理论,对材料系数按指数函数规律分布的功能梯度压电板条中的反平面运动裂纹问题进行了求解。利用Fourier积分变换方法将电绝缘型运动裂纹问题化为对偶积分方程,并进一步归结为易于求解的第二类Fredholm积分方程。通过渐近分析,获得了裂纹尖端应力、应变、电位移和电场的解析解,给出了裂纹尖端场各个变量的角分布函数,并求得了裂纹尖端场的强度因子,分析了压电材料物性梯度参数、几何尺寸及裂纹运动速度对它们的影响。结果表明,对于电绝缘型裂纹,功能梯度压电板条中运动裂纹尖端附近的各个场变量都具有-1/2阶的奇异性;当裂纹运动速度增大时,裂纹扩展的方向会偏离裂纹面。  相似文献   

3.
Summary The propagation of an anti-plane moving crack in a functionally graded piezoelectric strip (FGPS) is studied in this paper. The governing equations for the proposed analysis are solved using Fourier cosine transform. The mixed boundary value problems of the anti-plane moving crack, which is assumed to be either impermeable or permeable, are formulated as dual integral equations. By appropriate transformations, the dual integral equations are reduced to Fredholm integral equations of the second kind. For the impermeable crack, the stress intensity factor (SIF) of the crack in the FGPS depends on both the mechanical and electric loading, whereas, the SIF for the permeable crack depends only on the mechanical loading. The results obtained show that the gradient parameter of the FGPS and the velocity of the crack have significant influence on the dynamic SIF.Support from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 7081/00E) is acknowledged. Support from the National Natural Science Foundation of China (Project No. 10072041) is also acknowledged.  相似文献   

4.
In this paper, the behavior of four parallel symmetric cracks in a piezoelectric material under anti-plane shear loading is studied by the Schmidt method for the permeable crack surface boundary conditions. By use of the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations that the unknown variables are the jumps of the displacement across the crack surfaces. These equations are solved by means of the Schmidt method. The results show that the stress and the electric displacement intensity factors of cracks depend on the geometry of the crack. Contrary to the impermeable crack surface condition solution, it is found that the electric displacement intensity factors for the permeable crack surface conditions are much smaller than the results for the impermeable crack surface conditions.  相似文献   

5.
The behavior of two parallel non-symmetric cracks in piezoelectric materials subjected to the anti-plane shear loading was studied by the Schmidt method for the permeable crack electric boundary conditions. Through the Fourier transform, the present problem can be solved with two pairs of dual integral equations ip which the unknown variables are the jumps of displacements across crack surfaces. To solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the relations between electric displacement intensity factors and stress intensity factors at crack tips can be obtained. Numerical examples are provided to show the effect of the distance between two cracks upon stress and electric displacement intensity factors at crack tips. Contrary to the impermeable crack surface condition solution, it is found that electric displacement intensity factors for the permeable crack surface conditions are much smaller than those for the impermeable crack surface conditions. At the same time, it can be found that the crack shielding effect is also present in the piezoelectric materials.  相似文献   

6.
Summary  The problem of an interface edge crack between two bonded quarter-planes of dissimilar piezoelectric materials is considered under the conditions of anti-plane shear and in-plane electric loading. The crack surfaces are assumed to be impermeable to the electric field. An integral transform technique is employed to reduce the problem under consideration to dual integral equations. By solving the resulting dual integral equations, the intensity factors of the stress and the electric displacement and the energy release rate as well as the crack sliding displacement and the electric voltage across the crack surfaces are obtained in explicit form for the case of concentrated forces and free charges at the crack surfaces and at the boundary. The derived results can be taken as fundamental solutions which can be superposed to model more realistic problems. Received 10 November 2000; accepted for publication 28 March 2001  相似文献   

7.
In this paper, the dynamic interaction between two collinear cracks in a piezoelectric material plate under anti-plane shear waves is investigated by using the non-local theory for impermeable crack surface conditions. By using the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations. These equations are solved using the Schmidt method. This method is more reasonable and more appropriate. Unlike the classical elasticity solution, it is found that no stress and electric displacement singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The project supported by the Natural Science Foundation of Heilongjiang Province and the National Natural Science Foundation of China(10172030, 50232030)  相似文献   

8.
In this paper, the interaction between two collinear cracks in piezoelectric materials under anti-plane shear loading was investigated for the impermeable crack face conditions. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved using Schmidt's method. This process is quite different from that adopted previously. This study makes it possible to understand the two collinear cracks interaction in piezoelectric materials. The authors are grateful for financial support from the Post-Doctoral Science Foundation and the Natural Science Foundation of Heilongjiang Province.  相似文献   

9.
Zhou  Zhen-Gong  Chen  Jun-Ying  Wang  Biao 《Meccanica》2000,35(5):443-456
In this paper, the behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to two half spaces is investigated by a new method for the impermeable crack face conditions. The cracks are parallel to the interfaces in the mid-plane of the piezoelectric layer. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved using the Schmidt method. This process is quite different from that adopted previously. Numerical examples are provided to show the effect of the geometry of the interacting cracks and the piezoelectric constants of the material upon the stress intensity factor of the cracks.  相似文献   

10.
基于线性压电理论,本文获得了含有中心反平面裂纹的矩形压电体中的奇异应力和电场。利用Fourier积分变换和Fourier正弦级数将电绝缘型裂纹问题化为对偶积分方程,并进一步归结为易于求解的第二类Fred-holm积分方程。获得了裂纹尖端应力、应变、电位移和电场的解析解,求得了裂纹尖端场的强度因子及能量释放率。分析了压电矩形体的几何尺寸对它们的影响。结果表明,对于电绝缘型裂纹,裂纹尖端附近的各个场变量都具有-1/2阶的奇异性,能量释放率与电荷载的方向及大小有关,并且有可能为负值。  相似文献   

11.
The behavior of four parallel symmetry permeable interface cracks in a piezoelectric layer bonded to two half-piezoelectric spaces under anti-plane shear loading is investigated. By using the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations. These equations are solved by the Schmidt method. This process is quite different from that papers adopted previously. The normalized stress and electrical displacement intensity factors are determined for different geometric and property parameters for permeable crack surface conditions. Numerical examples are provided to show the effect of the geometry of the interacting cracks, the thickness and the materials constants of the piezoelectric layer upon the stress and electric displacement intensity factors of the cracks. It is found that the electric displacement intensity factors for the permeable crack surface conditions are much smaller than the results for the impermeable crack surface conditions.  相似文献   

12.
In this paper the dynamic anti-plane problem for a functionally graded magneto-electro-elastic plate containing an internal or an edge crack parallel to the graded direction is investigated. The crack is assumed to be magneto-electrically impermeable. Integral transforms and dislocation density functions are employed to reduce the problem to Cauchy singular integral equations. Field intensity factors and energy release rate are derived, analyzed and partially calculated numerically. The effects of material graded index, loading combination parameter (including size and direction) and geometry criterion of the plate on the dynamic energy release rate are shown graphically. Numerical results indicate that increasing the graded index can all retard the crack extension, and that both the applied magnetic field loadings and electric field loadings play a dominant role in the dynamic fracture behaviors of crack tips.  相似文献   

13.
IntroductionIn the fracture mechanics studies for piezoelectric materials,differently electricboundary conditions at the crack surfaces have been proposed by many researchers.Forexample,for the sake of analytical simplification,the assumption that the cra…  相似文献   

14.
Zhou  Zhen-Gong  Sun  Yu-Guo  Wang  Biao 《Meccanica》2004,39(1):63-76
In this paper, the dynamic behavior of a Griffith crack in a piezoelectric material strip subjected to the harmonic anti-plane shear waves is investigated by use of the non-local theory for impermeable crack surface conditions. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress and the electric displacement near at the crack tip. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations. These equations are solved using the Schmidt method. Contrary to the classical solution, it is found that no stress and electric displacement singularity is present near the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the thickness of the strip, the circular frequency of incident wave and the lattice parameter.  相似文献   

15.
Summary  The dynamic problem of an impermeable crack of constant length 2a propagating along a piezoelectric ceramic strip is considered under the action of uniform anti-plane shear stress and uniform electric field. The integral transform technique is employed to reduce the mixed-boundary-value problem to a singular integral equation. For the case of a crack moving in the mid-plane, explicit analytic expressions for the electroelastic field and the field intensity factors are obtained, while for an eccentric crack moving along a piezoelectric strip, numerical results are determined via the Lobatto–Chebyshev collocation method for solving a resulting singular integral equation. The results reveal that the electric-displacement intensity factor is independent of the crack velocity, while other field intensity factors depend on the crack velocity when referred to the moving coordinate system. If the crack velocity vanishes, the present results reduce to those for a stationary crack in a piezoelectric strip. In contrast to the results for a stationary crack, applied stress gives rise to a singular electric field and applied electric field results in a singular stress for a moving crack in a piezoelectric strip. Received 14 August 2001; accepted for publication 24 September 2002 The author is indebted to the AAM Reviewers for their helpful suggestions for improving this paper. The work was supported by the National Natural Science Foundation of China under Grant 70272043.  相似文献   

16.
分析了压电压磁复合材料中裂纹对反平面简谐弹性波的散射问题。利用傅立叶变换,使问题的求解转换为对一对以裂纹表面上的位移差为未知变量的对偶积分方程的求解。为了求解对偶积分方程,把裂纹面上的位移差展开为雅可比多项式形式,进而得到了裂纹长度、入射波波速及入射波频率对裂纹应力强度因子的影响。从数值结果可以看出,压电压磁复合材料中可导通裂纹的反平面问题的动应力奇异性与一般弹性材料中的反平面断裂问题动应力奇异性相同。  相似文献   

17.
IntroductionDuetotheintrinsicelectro_mechanicalcouplingbehavior,piezoelectricmaterialsareveryusefulinelectronicdevices.However,mostpiezoelectricmaterialsarebrittlesuchasceramicsandcrystals.Therefore ,piezoelectricmaterialshaveatendencytodevelopcriticalcracksduringthemanufacturingandthepolingprocesses.So ,itisimportanttostudytheelectro_elasticinteractionandfracturebehaviorsofpiezoelectricmaterials.Theincreasingattentiontothestudyofcrackproblemsinpiezoelectricmaterialshasledtoalotofsignificantw…  相似文献   

18.
In this paper, the dynamic behavior of two parallel symmetric cracks in piezoelectric materials under harmonic anti-plane shear waves is investigated by use of the non-local theory for permeable crack surface conditions. To overcome the mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the problem to obtain the stress occurs near the crack tips. By means of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations that the unknown variables are the jumps of the displacement along the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided. Contrary to the previous results, it is found that no stress and electric displacement singularity is present near the crack tip. The non-local elastic solutions yield a finite hoop stress near the crack tip, thus allowing for a fracture criterion based on the maximum stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the frequency of the incident wave, the distance between two cracks and the lattice parameter of the materials, respectively. Contrary to the impermeable crack surface condition solution, it is found that the dynamic electric displacement for the permeable crack surface conditions is much smaller than the results for the impermeable crack surface conditions. The results show that the dynamic field will impede or enhance crack propagation in the piezoelectric materials at different stages of the dynamic load.  相似文献   

19.
A flat annular crack in a piezoelectric layer subjected to electroelastic loadings is investigated under electrically impermeable boundary condition on the crack surface. Using Hankel transform technique, the mixed boundary value problem is reduced to a system of singular integral equations. With the aid of Gauss-Chebyshev integration technique, the integral equations are further reduced to a system of algebraic equations. The field intensity factor and energy release rate are determined. Numerical results reveal the effects of electric loadings and crack configuration on crack propagation and growth. The results seem useful for design of the piezoelectric structures and devices of high performance.  相似文献   

20.
The anti-plane dynamic problem of a functionally graded piezoelectric plane containing a hole–crack system is treated by a non-hypersingular traction-based boundary integral equation method. The material parameters vary exponentially in the same manner in an arbitrary direction. The system is loaded by an incident SH-type wave, and impermeable boundary conditions are assumed. Using a frequency-dependent fundamental solution of the wave equation, the boundary value problem is transformed into a system of integro-differential equations along the boundary of the hole and on the crack line. Its numerical solution yields the dynamic stress intensity factors and stress concentration factors. A parametric study reveals their dependence on the hole–crack scenario and its geometry, characteristics of the dynamic load and magnitude and direction of material inhomogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号