首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

2.
Summary The spectral decomposition of the compliance, stiffness, and failure tensors for transversely isotropic materials was studied and their characteristic values were calculated using the components of these fourth-rank tensors in a Cartesian frame defining the principal material directions. The spectrally decomposed compliance and stiffness or failure tensors for a transversely isotropic body (fiber-reinforced composite), and the eigenvalues derived from them define in a simple and efficient way the respective elastic eigenstates of the loading of the material. It has been shown that, for the general orthotropic or transversely isotropic body, these eigenstates consist of two double components, 1 and 2 which are shears (2 being a simple shear and 1, a superposition of simple and pure shears), and that they are associated with distortional components of energy. The remaining two eigenstates, with stress components 3, and 4, are the orthogonal supplements to the shear subspace of 1 and 2 and consist of an equilateral stress in the plane of isotropy, on which is superimposed a prescribed tension or compression along the symmetry axis of the material. The relationship between these superimposed loading modes is governed by another eigenquantity, the eigenangle .The spectral type of decomposition of the elastic stiffness or compliance tensors in elementary fourth-rank tensors thus serves as a means for the energy-orthogonal decomposition of the energy function. The advantage of this type of decomposition is that the elementary idempotent tensors to which the fourth-rank tensors are decomposed have the interesting property of defining energy-orthogonal stress states. That is, the stress-idempotent tensors are mutually orthogonal and at the same time collinear with their respective strain tensors, and therefore correspond to energy-orthogonal stress states, which are therefore independent of each other. Since the failure tensor is the limiting case for the respective x, which are eigenstates of the compliance tensor S, this tensor also possesses the same remarkable property.An interesting geometric interpretation arises for the energy-orthogonal stress states if we consider the projections of x in the principal3D stress space. Then, the characteristic state 2 vanishes, whereas stress states 1, 3 and 4 are represented by three mutually orthogonal vectors, oriented as follows: The 3 and 4 lie on the principal diagonal plane (312) with subtending angles equaling (–/2) and (-), respectively. On the positive principal 3-axis, is the eigenangle of the orthotropic material, whereas the 1-vector is normal to the (312)-plane and lies on the deviatoric -plane. Vector 2 is equal to zero.It was additionally conclusively proved that the four eigenvalues of the compliance, stiffness, and failure tensors for a transversely isotropic body, together with value of the eigenangle , constitute the five necessary and simplest parameters with which invariantly to describe either the elastic or the failure behavior of the body. The expressions for the x-vector thus established represent an ellipsoid centered at the origin of the Cartesian frame, whose principal axes are the directions of the 1-, 3- and 4-vectors. This ellipsoid is a generalization of the Beltrami ellipsoid for isotropic materials.Furthermore, in combination with extensive experimental evidence, this theory indicates that the eigenangle alone monoparametrically characterizes the degree of anisotropy for each transversely isotropic material. Thus, while the angle for isotropic materials is always equal to i = 125.26° and constitutes a minimum, the angle || progressively increases within the interval 90–180° as the anisotropy of the material is increased. The anisotropy of the various materials, exemplified by their ratiosE L/2GL of the longitudinal elastic modulus to the double of the longitudinal shear modulus, increases rapidly tending asymptotically to very high values as the angle approaches its limits of 90 or 180°.  相似文献   

3.
Zusammenfassung Zur Berechnung turbulenter Strömungen wird das k--Modell im Ansatz für die turbulente Scheinzähigkeit erweitert, so daß es den Querkrümmungs- und Dichteeinfluß auf den turbulenten Transportaustausch erfaßt. Die dabei zu bestimmenden Konstanten werden derart festgelegt, daß die bestmögliche Übereinstimmung zwischen Berechnung und Messung erzielt wird. Die numerische Integration der Grenzschichtgleichungen erfolgt unter Verwendung einer Transformation mit dem Differenzenverfahren vom Hermiteschen Typ. Das erweiterte Modell wird auf rotationssymmetrische Freistrahlen veränderlicher Dichte angewendet und zeigt Übereinstimmung zwischen Rechnung und Experiment.
On the influence of transvers-curvature and density in inhomogeneous turbulent free jets
The prediction of turbulent flows based on the k- model is extended to include the influence of transverse-curvature and density on the turbulent transport mechanisms. The empirical constants involved are adjusted such that the best agreement between predictions and experimental results is obtained. Using a transformation the boundary layer equations are solved numerically by means of a finite difference method of Hermitian type. The extended model is applied to predict the axisymmetric jet with variable density. The results of the calculations are in agreement with measurements.

Bezeichnungen Wirbelabsorptionskoeffizient - ci Massenkonzentration der Komponente i - cD, cL, c, c1, c2 Konstanten des Turbulenzmodells - d Düsendurchmesser - E bezogene Dissipationsrate - f bezogene Stromfunktion - f Korrekturfunktion für die turbulente Scheinzähigkeit - j turbulenter Diffusionsstrom - k Turbulenzenergie - ki Schrittweite in -Richtung - K dimensionslose Turbulenzenergie - L turbulentes Längenmaß - Mi Molmasse der Komponente i - p Druck - allgemeine Gaskonstante - r Querkoordinate - r0,5 Halbwertsbreite der Geschwindigkeit - r0,5c Halbwertsbreite der Konzentration - T Temperatur - u Geschwindigkeitskomponente in x-Richtung - v Geschwindigkeitskomponente in r-Richtung - x Längskoordinate - y allgemeine Funktion - Yi diskreter Wert der Funktion y - Relaxationsfaktor für Iteration - turbulente Dissipationsrate - transformierte r-Koordinate - kinematische Zähigkeit - Exponent - transformierte x-Koordinate - Dichte - k, Konstanten des Turbulenzmodells - Schubspannung - allgemeine Variable - Stromfunktion - Turbulente Transportgröße Indizes 0 Strahlanfang - m auf der Achse - r mit Berücksichtigung der Krümmung - t turbulent - mit Berücksichtigung der Dichte - im Unendlichen - Schwankungswert oder Ableitung einer Funktion - – Mittelwert Herrn Professor Dr.-Ing. R. Günther zum 70. Geburtstag gewidmet  相似文献   

4.
Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic solid matrix. The analysis is restricted to steady forms of the momentum equations and small deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; however, the determination of the Darcy's law permeability tensor represents part of the closure problem in which the position of the fluid-solid interface must be determined.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - E Young's modulus for the-phase, N/m2 - e i unit base vectors (i = 1, 2, 3) - g gravity vector, m2/s - H height of elastic, porous bed, m - k unit base vector (=e 3) - characteristic length scale for the-phase, m - L characteristic length scale for volume-averaged quantities, m - n unit normal vector pointing from the-phase toward the-phase (n = -n ) - p pressure in the-phase, N/m2 - P p g·r, N/m2 - r 0 radius of the averaging volume, m - r position vector, m - t time, s - T total stress tensor in the-phase, N/m2 - T 0 hydrostatic stress tensor for the-phase, N/m2 - u displacement vector for the-phase, m - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 - v velocity vector for the-phase, m/s Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - shear coefficient of viscosity for the-phase, Nt/m2 - first Lamé coefficient for the-phase, N/m2 - second Lamé coefficient for the-phase, N/m2 - bulk coefficient of viscosity for the-phase, Nt/m2 - T T 0 , a deviatoric stress tensor for the-phase, N/m2  相似文献   

5.
Dynamic problems connected with the wave propagation in soils not saturated with water and with wave interaction with obstacles and structural elements at the present time are solved on the basis of models in which plastic but not viscous soil properties are taken into account [1–5]. An analysis of experimental data and their comparison with the calculated results [4, 5] confirms that it is permissible to apply the model of an elasticplastic medium to soils in problems concerning the interaction of waves and structures. At the same time plane-wave damping in soils takes place more intensively than would follow from calculations carried out on the basis of models of an elastic-plastic medium. For example, if in a section of a poured sandy soil, taken as the initial section, the maximum stress in the wave is m=ll kgf/cm2 and its duration is 6=8 msec, then at a distance of 25 cm the calculations give m=9.5 kgf/cm2, while the experiment gives m= 5 kgf/cm2. If in the initial section m= 20 kgf/cm2 and =6 msec, then at a distance of 35 cm the calculation gives m= l7 kgf/cm2, while the experiment gives m= 9 kgf/cm2. In the calculations it was assumed that unloading takes place with a constant strain. This deviation of the calculated results from the experiment can be explained, in the first place, by the dependence of the () on the strain rate , which is not taken into account in the model of an elastic-plastic medium. The viscous properties cause additional energy losses and a more intensive damping of the waves. Experimentally the dependence of the () curves on the strain rate has been investigated for many soils [5–8]. The dynamic load on the test sample was produced by a body falling from a height or being accelerated by some method. Below we present test results of viscous soil properties when the test sample is compressed by an air shock wave. Compression curves and approximate numerical values of the coefficient of viscosity are obtained.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 9, No. 4, pp. 68–71, July–August, 1968.The author thanks A. I. Shishikin for his participation in the experiments.  相似文献   

6.
An analytical model for deducing the actual stress-strain properties from laboratory test results is discussed. As an illustration, an elastic bilinear material is used for unconfined cylindrical compression test conditions, as simulated with a finite element analysis. The results obtained are applicable for assisting in evaluating measured strength and stiffness properties of some clay soils, concrete test cylinders, concrete cores, and rock cores.The quantitative results of this study can be used for interpreting measured stress-strain data for unconfined compression test conditions. The error in measured results is shown to be influenced by Poisson's ratio, length-to-diameter ratio of the specimen, end condition, and ratio of inelastic modulus to initial elastic modulus. Curves for adjusting the measured results to the theoretical results are presented.Nomenclature D specimen diameter - E i initial elastic stiffness modulus - E y elastic stiffness modulus beyond the yield stress, plastic or inelastic modulus - L specimen length - axial strain - av average strain - g gage length strain - y yield strain - Poisson's ratio - compressive stress - av average stress - t theoretical compressive stress - y yield stress - ym measured stress at the yield strain  相似文献   

7.
The stability of the steady self-similar flow in the boundary layer on a rotating disk of infinite radius with corotation of the surrounding fluid is analyzed by the normal mode method. The spectral problem for infinitesimal three-dimensional disturbances is solved by a collocation method with expansion of the amplitude functions in Chebyshev polynomials. It is established that for all values of the parameter 0, equal to the ratio of the angular velocities of the fluid and the disk, the lower critical Reynolds number is determined byA-type, waves, whose development is governed by the parallel instability mechanism typical of an Ekman layer. TheB-type instability, associated with the presence of an inflection point on the velocity profile, disappears when 4. The neutral surfaces are calculated for Karman flow (=0) and Bödewadt flow (). It is found that in Karman flowA-type waves may grow at values of the Reynolds number several times smaller than the critical Reynolds number for spiral vortices. The results of the analysis are compared with the available experimental data.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.5, pp. 69–77, September–October, 1992.  相似文献   

8.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

9.
Summary Stress analysis has been carried out for a finite cylinder subjected to arbitrarily distributed axisymmetrical surface loads. Direct stress x in the axial direction is assumed to be of the form x = 0+r 1 +r 2 where 0 to 2 are functions of x. Using the equations of equilibrium and compatibility the other direct stresses and the shearing stress are expressed by 1 and 2. Fundamental equations governing 1 and 2 are introduced using the variational principle of complementary energy. From the results of the present analysis it is evident that the boundary conditions can be satisfied completely even for the case where the external forces are specified in complicated form, and that more accurate solutions can easily be obtained by introducing additional terms in x.
Spannungsanalyse für den Zylinder unter axialsymmetrischer Last in beliebiger Verteilung
Übersicht Für einen endlichen Zylinder unter axialsymmetrischer Oberflächenlast in beliebiger Verteilung werden die Spannungen ermittelt. Die Normalspannung in Axialrichtung wird in der Form x = 0+r 1 +r 2 angesetzt mit 0, 1, 2 als Funktionen von x. Mit Hilfe der Gleichgewichtsund Verträglichkeitsbedingungen werden die anderen Normalspannungen und die Schubspannung durch 1 und 2 ausgedrückt. Über das Variationsprinzip für die Komplementärenergie werden die grundlegenden Gleichungen für 1 und 2 eingeführt. Die Ergebnisse zeigen, daß die Randbedingungen selbst für komplizierte Belastungsarten vollständig erfüllbar sind und mit zusätzlichen Termen in x mühelos noch genauere Lösungen bestimmt werden können.
  相似文献   

10.
The paper reports the outcome of a numerical study of fully developed flow through a plane channel composed of ribleted surfaces adopting a two-equation turbulence model to describe turbulent mixing. Three families of riblets have been examined: idealized blade-type, V-groove and a novel U-form that, according to computations, achieves a superior performance to that of the commercial V-groove configuration. The maximum drag reduction attained for any particular geometry is broadly in accord with experiment though this optimum occurs for considerably larger riblet heights than measurements indicate. Further explorations bring out a substantial sensitivity in the level of drag reduction to the channel Reynolds number below values of 15 000 as well as to the thickness of the blade riblet. The latter is in accord with the trends of very recent, independent experimental studies.Possible shortcomings in the model of turbulence are discussed particularly with reference to the absence of any turbulence-driven secondary motions when an isotropic turbulent viscosity is adopted. For illustration, results are obtained for the case where a stress transport turbulence model is adopted above the riblet crests, an elaboration that leads to the formation of a plausible secondary motion sweeping high momentum fluid towards the wall close to the riblet and thereby raising momentum transport.Nomenclature c f Skin friction coefficient - c f Skin friction coefficient in smooth channel at the same Reynolds number - k Turbulent kinetic energy - K + k/ w - h Riblet height - S Riblet width - H Half height of channel - Re Reynolds number = volume flow/unit width/ - Modified turbulent Reynolds number - R t turbulent Reynolds numberk 2/ - P k Shear production rate ofk, t (U i /x j + U j /x i ) U i /x j - dP/dz Streamwise static pressure gradient - U i Mean velocity vector (tensor notation) - U Friction velocity, w/ where w=–H dP/dz - W Mean velocity - W b Bulk mean velocity through channel - y + yU /v. Unless otherwise stated, origin is at wall on trough plane of symmetry - Kinematic viscosity - t Turbulent kinematic viscosity - Turbulence energy dissipation rate - Modified dissipation rate – 2(k 1/2/x j )2 - Density - k , Effective turbulent Prandtl numbers for diffusion ofk and   相似文献   

11.
In the method of volume averaging, the difference between ordered and disordered porous media appears at two distinct points in the analysis, i.e. in the process of spatial smoothing and in the closure problem. In theclosure problem, the use of spatially periodic boundary conditions isconsistent with ordered porous media and the fields under consideration when the length-scale constraint,r 0L is satisfied. For disordered porous media, spatially periodic boundary conditions are an approximation in need of further study.In theprocess of spatial smoothing, average quantities must be removed from area and volume integrals in order to extractlocal transport equations fromnonlocal equations. This leads to a series of geometrical integrals that need to be evaluated. In Part II we indicated that these integrals were constants for ordered porous media provided that the weighting function used in the averaging process contained thecellular average. We also indicated that these integrals were constrained by certain order of magnitude estimates for disordered porous media. In this paper we verify these characteristics of the geometrical integrals, and we examine their values for pseudo-periodic and uniformly random systems through the use of computer generated porous media.

Nomenclature

Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - a i i=1, 2, 3 gaussian probability distribution used to locate the position of particles - I unit tensor - L general characteristic length for volume averaged quantities, m - L characteristic length for , m - L characteristic length for , m - characteristic length for the -phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1, 2, 3 lattice vectors, m - m convolution product weighting function - m v special convolution product weighting function associated with the traditional volume average - n i i=1, 2, 3 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - r position vector, m - r m support of the weighting functionm, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume,, m3 - x positional vector locating the centroid of an averaging volume, m - x 0 reference position vector associated with the centroid of an averaging volume, m - y position vector locating points relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - /L, small parameter in the method of spatial homogenization - standard deviation ofa i - r standard deviation ofr - r intrinsic phase average of   相似文献   

12.
The objective of this paper is to present an overview of the fundamental equations governing transport phenomena in compressible reservoirs. A general mathematical model is presented for important thermo-mechanical processes operative in a reservoir. Such a formulation includes equations governing multiphase fluid (gas-water-hydrocarbon) flow, energy transport, and reservoir skeleton deformation. The model allows phase changes due to gas solubility. Furthermore, Terzaghi's concept of effective stress and stress-strain relations are incorporated into the general model. The functional relations among various model parameters which cause the nonlinearity of the system of equations are explained within the context of reservoir engineering principles. Simplified equations and appropriate boundary conditions have also been presented for various cases. It has been demonstrated that various well-known equations such as Jacob, Terzaghi, Buckley-Leverett, Richards, solute transport, black-oil, and Biot equations are simplifications of the compositional model.Notation List B reservoir thickness - B formation volume factor of phase - Ci mass of component i dissolved per total volume of solution - C i mass fraction of component i in phase - C heat capacity of phase at constant volume - Cp heat capacity of phase at constant pressure - D i hydrodynamic dispersion coefficient of component i in phase - DMTf thermal liquid diffusivity for fluid f - F = F(x, y, z, t) defines the boundary surface - fp fractional flow of phase - g gravitational acceleration - Hp enthalpy per unit mass of phase - Jp volumetric flux of phase - krf relative permeability to fluid f - k0 absolute permeability of the medium - Mp i mass of component i in phase - n porosity - N rate of accretion - Pf pressure in fluid f - pca capillary pressure between phases and =p-p - Ri rate of mass transfer of component i from phase to phase - Ri source source rate of component i within phase - S saturation of phase - s gas solubility - T temperature - t time - U displacement vector - u velocity in the x-direction - v velocity in the y-direction - V volume of phase - Vs velocity of soil solids - Wi body force in coordinate direction i - x horizontal coordinate - z vertical coordinate Greek Letters p volumetric coefficient of compressibility - T volumetric coefficient of thermal expansion - ij Kronecker delta - volumetric strain - m thermal conductivity of the whole matrix - internal energy per unit mass of phase - gf suction head - density of phase - ij tensor of total stresses - ij tensor of effective stresses - volumetric content of phase - f viscosity of fluid f  相似文献   

13.
It is well known that articulation may cause the electric and thermal conducting properties of a medium to become anisotropic. Extensive experimental data relating to the conductivity of rock were presented in [1], and according to these data the ambient resistance in the case of an orderly arrangement of cracks noticeably depends on the direction along which it is measured; an ellipsoid of resistance anisotropy can be constructed from the measurement results. A pronounced correlation between the orientations of the resistivity extrema and the orientation of the crack system is observed here. A comparison betwen the direction rose of the fractures and the direction rose of the articulation carried out for different regions has shown that they are identical. A crack density tensor T describing the average (with respect to a given volume) geometry of the articulation has been introduced [2, 3]. In the current work, it is proved that T can be effectively used in problems involving anisotropic electrical and thermal conductivity. The resistivity tensor and thermal-conductivity coefficient tensor K, which characterize the anisotropy of the electrical and thermal conducting properties, are expressed in terms of t. The structure of this relation is established; the equations presented allow us to find the form of and K if the articulation parameters are known.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 141–144, January–February, 1976.  相似文献   

14.
Summary As part of a study on the hydrodynamics of a cyclone separator, a theoretical investigation of the flow pattern in a flat box cyclone (vortex chamber) has been carried out. Expressions have been derived for the tangential velocity profile as influenced by internal friction (eddy viscosity) and wall friction. The most important parameter controlling the tangential velocity profile is = –u 0 R/(v+ ), where u 0 is the radial velocity at the outer radius R of the cyclone, the kinematic liquid viscosity and is the kinematic eddy viscosity. For values of greater than about 10 the tangential velocity profile is nearly hyperbolic, for smaller than 1 the tangential velocity even decreases towards the centre. It is shown how and also the wall friction coefficient may be obtained from experimental velocity profiles with the aid of suitable graphs. Because of the close relation between eddy viscosity and eddy diffusion, measurements of velocity profiles in flat box cyclones will also provide information on the eddy motion of particles in a cyclone, a motion reducing its separation efficiency.List of symbols A cross-sectional area of cyclone inlet - h height of cyclone - p static pressure in cyclone - p static pressure difference in cyclone between two points on different radius - r radius in cyclone - r 1 radius of cyclone outlet - R radius of cyclone circumference - u radial velocity in cyclone - u 0 radial velocity at circumference of flat box cyclone - v tangential velocity - v 0 tangential velocity at circumference of flat box cyclone - w axial velocity - z axial co-ordinate in cyclone - friction coefficient in flat box cyclone (for definition see § 5) - 1 value of friction coefficient for 1<< 2 - 2 value of friction coefficient for 2<<1 - = - 1 value of for 1<< 2 - 2 value of for 2<<1 - thickness of laminar boundary layer - =/h - turbulent kinematic viscosity - ratio of z to h - k ratio of height of cyclone to radius R of cyclone - parameter describing velocity profile in cyclone =–u 0 R/(+) - kinematic viscosity of fluid - density of fluid - ratio of r to R - 1 value of at outlet of cyclone - 2 value of at inner radius of cyclone inlet - w shear stress at cyclone wall - angular momentum in cyclone/angular momentum in cyclone inlet - 1 value of at = 1 - 2 value of at = 2  相似文献   

15.
This paper presents a new formulation for the laminar free convection from an arbitrarily inclined isothermal plate to fluids of any Prandtl number between 0.001 and infinity. A novel inclination parameter is proposed such that all cases of the horizontal, inclined and vertical plates can be described by a single set of transformed equations. Moreover, the self-similar equations for the limiting cases of the horizontal and vertical plates are recovered from the transformed equations by setting=0 and=1, respectively. Heated upward-facing plates with positive and negative inclination angles are investigated. A very accurate correlation equation of the local Nusselt number is developed for arbitrary inclination angle and for 0.001 Pr .
Wärmeübertragung bei freier Konvektion an einer isothermen Platte mit beliebiger Neigung
Zusammenfasssung Diese Untersuchung stellt eine neue Formulierung der laminaren freien Konvektion von Flüssigkeiten mit einer Prandtl-Zahl zwischen 0,001 und unendlich an einer beliebig schräggestellten isothermen Platte dar. Ein neuer Neigungsparameter wird eingeführt, so daß alle Fälle der horizontalen, geneigten oder vertikalen Platte von einem einzigen Satz transformierter Gleichungen beschrieben werden können. Die unabhängigen Gleichungen für die beiden Fälle der horizontalen and vertikalen Platte wurden für=0 und=1 aus den transformierten Gleichungen wieder abgeleitet. Es wurden erwärmte aufwärtsgerichtete Platten mit positiven und negativen Neigungswinkeln untersucht. Eine sehr genaue Gleichung wurde für die lokale Nusselt-Zahl bei beliebigen Neigungswinkeln und für 0,001 Pr entwickelt.

Nomenclature C p specific heat - f reduced stream function - g gravitational acceleration - Gr local Grashof number,g(T w T w ) x3/v2 - h local heat transfer coefficient - k thermal conductivity - n constant exponent - Nu local Nusselt number,hx/k - p pressure - Pr Prandtl number, v/ - Ra local Rayleigh number,g(T w T )J x3/v - T fluid temperature - T w wall temperature - T temperature of ambient fluid - u velocity component in x-direction - v velocity component in y-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra¦sin¦)1/4/( Ra cos()1/5 - pseudo-similarity variable, (y/) - dimensionless temperature, (TT )/(T wT ) - ( Ra cos)1/5+(Rasin)1/4 - v kinematic viscosity - 1/[1 +(Ra cos)1/5/( Ra¦sin)1/4] - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of plate inclination measured from the horizontal - stream function - dimensionless dynamic pressure  相似文献   

16.
Incoherent phase transitions are more difficult to treat than their coherent counterparts. The interface, which appears as a single surface in the deformed configuration, is represented in its undeformed state by a separate surface in each phase. This leads to a rich but detailed kinematics, one in which defects such as vacancies and dislocations are generated by the moving interface. In this paper we develop a complete theory of incoherent phase transitions in the presence of deformation and mass transport, with phase interface structured by energy and stress. The final results are a complete set of interface conditions for an evolving incoherent interface.Frequently used symbols Ai,Ci generic subsurface of St - Bi undeformed phase-i region - C configurational bulk stress, Eshelby tensor - F deformation gradient - G inverse deformation gradient - H relative deformation gradient - J bulk Jacobian of the deformation - ¯K, Ki total (twice the mean) curvature of and Si - Lin (U, V) linear transformations from U into V - Lin+ linear transformations of 3 with positive determinant - Orth+ rotations of 3 - Qa external bulk mass supply of species a - ¯S bulk Cauchy stress tensor - S bulk Piola-Kirchhoff stress tensor - Si undeformed phase i interface - Ui relative velocity of Si - Unim+ linear transformations of 3 with unit determinant - ¯V, Vi normal velocity of and Si - intrinsic edge velocity of S and A i S - Wi volume flow across the phase-i interface - X material point - b external body force - e internal bulk configurational force - fi external interfacial force (configurational) - ¯g external interfacial force (deformational) - grad, div spatial gradient and divergence - gradient and divergence on - h relative deformation - ha, diffusive mass flux of species a and list of mass fluxes - ¯m outward unit normal to a spatial control volume - ¯n, ni unit normal to and Si - n subspace of 3 orthogonal to n - ¯qa external interfacial mass supply of species a - s ......... - ¯v, vi compatible velocity fields of and Si - ¯w, wi compatible edge velocity fields for and Ai - x spatial point - yi deformation or motion of phase i - y. material velocity - generic subsurfaces of - , i deformed body and deformed phase-i region - () energy supplied to by mass transport - symmetry group of the lattice - i, surface jacobians - lattice - () power expended on - spatial control volume - S deformed phase interface - lattice point density - interfacial power density - , A total surface stress - C configurational surface stress for phase 1 (material) - ¯Ci configurational surface stress (spatial) - Fi tangential deformation gradient - Gi inverse tangential deformation gradient - H incoherency tensor - ¯1(x), 1i(X) inclusions of ¯n(x) and n i (X) into 3 - K configurational surface stress for phase 2 (material) - ¯L, li curvature tensor of and Si - ¯P(x), Pi(X) projections of 3 onto ¯n(x) and ni (X) - ¯S, S deformational surface stress (spatial and material) - ¯a, a normal part of total surface stress - c normal part of configurational surface stress for phase 1 (material) - ei internal interfacial configurational force - ¯v, vi unit normal to and A i - (x),i(X) projections of 3 onto ¯n(x) and n i (X) - i normal internal force (material) - bulk free energy - slip velocity - i=(–1)i i ......... - a, chemical potential of species a and list of potentials - a, bulk molar density of species a and list of molar densities - i normal internal force (spatial) - surface tension - , i effective shear - referential-to-spatial transform of field - interfacial energy - grand canonical potential - l unit tensor in 3 - x, vector and tensor product in 3 - (...)., t(...) material and spatial time derivative - , Div material gradient and divergence - gradient and divergence on Si - (...), (...) normal time derivative following and Si - (...) limit of a bulk field asx ,xi - [...],...> jump and average of a bulk field across the interface - (...)ext extension of a surface tensor to 3 - tangential part of a vector (tensor) on and Si  相似文献   

17.
A mixed convection parameter=(Ra) 1/4/(Re)1/2, with=Pr/(1+Pr) and=Pr/(1 +Pr)1/2, is proposed to replace the conventional Richardson number, Gr/Re2, for combined forced and free convection flow on an isothermal vertical plate. This parameter can readily be reduced to the controlling parameters for the relative importance of the forced and the free convection,Ra 1/4/(Re 1/2 Pr 1/3) forPr 1, and (RaPr)1/2/(RePr 1/2 forPr 1. Furthermore, new coordinates and dependent variables are properly defined in terms of, so that the transformed nonsimilar boundary-layer equations give numerical solutions that are uniformly valid over the entire range of mixed convection intensity from forced convection limit to free convection limit for fluids of any Prandtl number from 0.001 to 10,000. The effects of mixed convection intensity and the Prandtl number on the velocity profiles, the temperature profiles, the wall friction, and the heat transfer rate are illustrated for both cases of buoyancy assisting and opposing flow conditions.
Mischkonvektion an einer vertikalen Platte für Fluide beliebiger Prandtl-Zahl
Zusammenfassung Für die kombinierte Zwangs- und freie Konvektion an einer isothermen senkrechten Platte wird ein Mischkonvektions-Parameter=( Ra) 1/4 (Re)1/2, mit=Pr/(1 +Pr) und=Pr/(1 +Pr)1/2 vorgeschlagen, den die gebräuchliche Richardson-Zahl, Gr/Re2, ersetzen soll. Dieser Parameter kann ohne weiteres auf die maßgebenden Kennzahlen für den relativen Einfluß der erzwungenen und der freien Konvektion reduziert werden,Ra 1/4/(Re 1/2 Pr 1/3) fürPr 1 und (RaPr)1/4/(RePr)1/2 fürPr 1. Weiterhin werden neue Koordinaten und abhängige Variablen als Funktion von definiert, so daß für die transformierten Grenzschichtgleichungen numerische Lösungen erstellt werden können, die über den gesamten Bereich der Mischkonvektion, von der freien Konvektion bis zur Zwangskonvektion, für Fluide jeglicher Prandtl-Zahl von 0.001 bis 10.000 gleichmäßig gültig sind. Der Einfluß der Intensität der Mischkonvektion und der Prandtl-Zahl auf die Geschwindigkeitsprofile, die Temperaturprofile, die Wandreibung und den Wärmeübergangskoeffizienten werden für die beiden Fälle der Strömung in und entgegengesetzt zur Schwerkraftrichtung dargestellt.

Nomenclature C f local friction coefficient - C p specific heat capacity - f reduced stream function - g gravitational acceleration - Gr local Grashoff number,g T w –T )x3/v2 - Nu local Nusselt number - Pr Prandtl number,v/ - Ra local Rayleigh number,g T w –T x 3/( v) - Re local Reynolds number,u x/v - Ri Richardson number,Gr/Re 2 - T fluid temperature - T w wall temperature - T free stream temperature - u velocity component in thex direction - u free stream velocity - v velocity component in they direction - x vertical coordinate measuring from the leading edge - y horizontal coordinate Greek symbols thermal diffusivity - thermal expansion coefficient - mixed convection parameter (Ra)1/4/Re)1/2 - pseudo-similarity variable,(y/x) - 0 conventional similarity variable,(y/x)Re 1/2 - dimensionless temperature, (T–T T W –T - unified mixed-flow parameter, [(Re) 1/2 + (Ra)1/4] - dynamic viscosity - kinematic viscosity - stretched streamwise coordinate or mixed convection parameter, [1 + (Re)1/2/(Ra) 1/4]–1=/(1 +) - density - Pr/(1 + Pr) w wall shear stress - stream function - Pr/(l+Pr)1/3 This research was supported by a grand from the National Science Council of ROC  相似文献   

18.
Zusammenfassung Wird eine viskoelastische Flüssigkeit in einem konzentrischen Kugel-Kugel-Raum durch Rotation einer Kugel beansprucht, so ermöglicht eine Analyse der Antriebsmoment- und Druckverteilungskennlinie die Bestimmung rheologischer Parameter. Insbesondere zeigen die Ergebnisse, daß der in den konventionellen Meßapparaten nur ungenau dargestellte Bereich der Anfangsbeanspruchung durch geeignete Wahl von Spaltweite und Durchmesserverhältnis erfaßt werden kann.
Summary Visco-elastic liquids will be stressed in a concentric space between a sphere and a hollow sphere by rotation of one of the spheres. By analysis of the torque- and wall-pressure-characteristics it is possible to determine rheological parameters. In this paper it is shown how to measure the dynamic viscosity and the relaxation times in the range of initial shear-strain in a sphere-sphere-rheometer.

a isotroper Druckanteil - f i () Geometriefunktionen - g Erdbeschleunigung - h i , i Normalspannungsparameter - k, m Fließkurvenparameter des Potenzgesetzes - n Drehfrequenz der Innenkugel - p w Wanddruck - reduzierter Wanddruck - p 0 Außendruck - r, , Kugelkoordinaten - t 0,t 0i Anfangsrelaxationszeiten - v Geschwindigkeitsvektor - A, C Fließkurvenparameter des Polynomgesetzes - M Antriebsmoment - M i Drehmomentanteile - R Radius der Innenkugel - R G Radius der Hohlkugel - i Stoffkonstanten der rheologischen Zustandsfunktion - Schergradient - RadienverhältnisR/R G - variable dynamische Viskosität - 0 Anfangsviskosität - Proportionalitätsfaktor - Dichte - I , II , Viskosimeterfunktionen - Kreisfrequenz der Innenkugel - D Deformationsgeschwindigkeitstensor - I Einheitstensor - W Rotationstensor - Spannungstensor - korotationale zeitliche Ableitung des Deformationsgeschwindigkeitstensors (n-te Ableitung) - Nablaoperator Vorgetragen auf der Jahrestagung der Deutschen Rheologen vom 28.–30. April 1975 in Berlin.Mit 4 Abbildungen und 1 Tabelle  相似文献   

19.
In a previous derivation of Darcy's law, the closure problem was presented in terms of an integro-differential equation for a second-order tensor. In this paper, we show that the closure problem can be transformed to a set of Stokes-like equations and we compare solutions of these equations with experimental data. The computational advantages of the transformed closure problem are considerable.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the averaging volume, m2 - B second-order tensor used to respresent the velocity deviation - b vector used to represent the pressure deviation, m–1 - C second-order tensor related to the permeability tensor, m–2 - D second-order tensor used to represent the velocity deviation, m2 - d vector used to represent the pressure deviation, m - g gravity vector, m/s2 - I unit tensor - K C –1,–D, Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - l i i=1, 2, 3, lattice vectors, m - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - p pressure in the-phase, N/m 2 - p intrinsic phase average pressure, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r position vector locating points in the-phase, m - r 0 radius of the averaging volume, m - t time, s - v velocity vector in the-phase, m/s - v intrinsic phase average velocity in the-phase, m/s - v phase average or Darcy velocity in the \-phase, m/s - v v , spatial deviation of the velocity in the-phase m/s - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 Greek Letters V /V volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2  相似文献   

20.
In this paper the horizontal layer of clear ice sticking to the substrate is melted by comparatively short wave radiation similar to solar radiation for the purpose of removing ice from the surface of the material subject to atmospheric icing. The radiating source used for melting is 300 wattages halogen lamps whose color temperature is 3200K at 100 voltages. From the present investigation, a typical phenomenon of backmelting is observed clearly and it can be found that the predicted results including the melting rate of upper and lower layers which are melted by radiant energy impinged on or penetrated the ice layer are in good agreement with the experimental results.
Aufschmelzen einer waagerechten Klareisschicht durch Strahlung
Zusammenfassung Eine waagerechte Klareisschicht, die auf einer Unterlage aufgefroren war, wurde durch kurzwellige Strahlung, Ähnlich der Sonnenstrahlung, zum Schmelzen gebracht, um die Entfernung von Eis nach atmosphÄrischer Vereisung zu untersuchen. Die Strahlungsquelle war eine 300 Watt-Halogenlampe mit einer Farbtemperatur von 3200 Kelvin bei 100 Volt. Als typische Erscheinung wurde ein Rückseiten-Schmelzen gefunden, im übrigen sind die vorausberechneten Schmelzraten an der Ober- und der Unterseite durch aufgenommene oder durchgelassene Strahlungsenergie in guter übereinstimmung mit den Messungen.

Nomenclature av monochromatic absorption coefficient - A transmission (= q r + {hi}/qro) - cp specific heat - Ebv monochromatic emissive power - hD mass transfer coefficient - hi initial thickness of ice layer - hm thickness of substrate - Li latent heat of melting - Lw latent heat of evaporation or condensation - heat flux absorbed at surface of substrate - qr0 radiant heat flux impinged onto ice or free surface - q r + {y} forward radiant heat flux - q r {y} backward radiant heat flux - S1 thickness of upper melt layer - S2 thickness of lower melt layer - S'2 distance from free surface to bottom surface of ice layer - t time - T temperature - T1 temperature of air-water or air-ice interface - T2 temperature of substrate surface - T3 temperature of back side surface of substrate - Tb temperature of radiating source - Ti temperature in ice layer - Tw1 temperature in upper melt layer - Tw2 temperature in lower melt layer - T environmental temperature - Ww saturated vapor concentration at free surface - Wt8 vapor concentration at environment - y distance from free or ice surface - y grid size of water or ice - ym grid size of substrate Greek symbols heat transfer coefficient - spectral absorptivity - t total absorptivity - i thermal diffusivity of ice - m thermal diffusivity of substrate - w thermal diffusivity of water - i thermal conductivity of ice - m thermal conductivity of substrate - w thermal conductivity of water - wavelength - av densitiy of air-vapor mixture - i density of ice - Stefan-Boltzman constant  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号