首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combined influence of viscosity, Hall effect and ion slip on hydrodynamic fields and on heat transfer is investigated. The exact solutions for velocity, induced magnetic field and temperature are derived for the laminar MHD flow in a flat channel assuming a small magnetic Reynolds number, finely segmented electrodes, fully developed flow and uniform heat flux at channel walls. The internal generation of heat is not considered. The Kantorowitsch method of variational calculus is employed to approximate the complicated velocity distribution.  相似文献   

2.
MHD Couette flow in a channel with non-conducting walls, partially filled with a porous medium, is investigated in the presence of an inclined magnetic field in a rotating system. It is observed that the MHD flow behaviour in the channel has been influenced significantly by the Coriolis force, the hydromagnetic force with an inclusion of Hall current and the permeability of the porous medium. Effects of the parameters of these forces on the velocity distributions, induced magnetic field distributions and the skin friction have been depicted graphically and discussed.  相似文献   

3.
The analog of Orr's problem is formulated for MHD flows. Arbitrary three-dimensional disturbances satisfying the continuity equations are considered. It is established that direct interaction of the disturbances of the magnetic field and the velocity field cannot increase the energy estimate of the critical Reynolds number. Numerical calculations for Hartmann flow and modified Couette flows are made for the particular case of small magnetic Reynolds numbers, The minimum value of R is attained for disturbances with a wave vector perpendicular to the velocity vector of the main flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 3–9, July–August, 1971.The authors thank M. A. Gol'dshtik for his interest in their work.  相似文献   

4.
In this note, the problem of an incompressible viscous fluid moving through a porous medium (Brinkman model) between two wavy plates under the effects of a constant inclined magnetic field that makes an angle with the vertical axis and constant suction, are studied numerically by a method related to the method of Takabatake and Ayukawa in 1982. The present approach is not restricted by any of the parameters appearing in the problem such as Reynolds number, magnetic parameter, suction parameter, the wave number and amplitude ratio. The variations in velocity, flow rate and pressure gradient with the above governing parameters are presented. Moreover, the effect of varying the porous medium and the inclined angle is also studied.  相似文献   

5.
The results of an experimental investigation of the hydrodynamic forces acting on a circular cylinder oscillating horizontally in water at rest parallel to the free surface are presented. The coefficients of the hydrodynamic forces — the inertia force proportional to the acceleration and the viscous drag proportional to the square of the velocity -are determined. The force coefficients are shown to depend significantly on the dimensionless (divided by the cylinder diameter) amplitude of the oscillations on the interval of variation from 0.5 to 10. In the experiments the maximum values of the Reynolds numbers, calculated from the maximum velocity and the cylinder diameter, were 2.103–8.104.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 111–115, July–August, 1989.  相似文献   

6.
This research work is aimed at proposing models for the hydrodynamic force and torque experienced by a spherical particle moving near a solid wall in a viscous fluid at finite particle Reynolds numbers. Conventional lubrication theory was developed based on the theory of Stokes flow around the particle at vanishing particle Reynolds number. In order to account for the effects of finite particle Reynolds number on the models for hydrodynamic force and torque near a wall, we use four types of simple motions at different particle Reynolds numbers. Using the lattice Boltzmann method and considering the moving boundary conditions, we fully resolve the flow field near the particle and obtain the models for hydrodynamic force and torque as functions of particle Reynolds number and the dimensionless gap between the particle and the wall. The resolution is up to 50 grids per particle diameter. After comparing numerical results of the coefficients with conventional results based on Stokes flow, we propose new models for hydrodynamic force and torque at different particle Reynolds numbers. It is shown that the particle Reynolds number has a significant impact on the models for hydrodynamic force and torque. Furthermore, the models are validated against general motions of a particle and available modeling results from literature. The proposed models could be used as sub-grid scale models where the flows between particle and wall can not be fully resolved, or be used in Lagrangian simulations of particle-laden flows when particles are close to a wall instead of the currently used models for an isolated particle.  相似文献   

7.
Unsteady laminar mixed convection flow (combined free and forced convection flow) along a vertical slender cylinder embedded in a porous medium under the combined buoyancy effect of thermal and species diffusion has been studied. The effect of the permeability of the medium as well as the magnetic field has been included in the analysis. The partial differential equations with three independent variables governing the flow have been solved numerically using a implicit finite difference scheme in combination with the quasilinearization technique. Computations have been carried out for accelerating, decelerating and oscillatory free stream velocity distributions. The effects of the permeability of the medium, buoyancy forces, transverse curvature and magnetic field on skin friction, heat transfer and mass transfer have been studied. It is found that the effect of free stream velocity distribution is more pronounced on the skin friction than on the heat and mass transfer. The permeability and magnetic parameters increase the skin friction, but reduce the heat and mass transfer. The skin friction, heat transfer and mass transfer are enhanced due to the buoyancy forces and curvature parameter. The heat transfer is strongly dependent on the viscous dissipation parameter and the Prandtl number, and the mass transfer on the Schmidt number.  相似文献   

8.
朱祚金 《力学学报》2002,34(3):425-431
通过用时间分裂算法求解Navier-Stokes方程,对中等Reynolds数下靠近排列的两个交错方柱三维绕流进行了数值模拟,其中,中间速度场用四阶Adams格式计算,压力场通过结合近似因子分解方法AF1与稳定的双共轭梯度方法Bi-CGSTAB进行迭代求解.数值模拟发现当两个方柱靠得较近时,有互相吸引趋势,而且上游方柱的Strouhal数较大.方柱的交错排列方式对绕流影响明显.计算结果与实验定性吻合,而且比用MAC-AF1方法计算的结果好.  相似文献   

9.
In the present work we study potential applicability of large eddy simulation (LES) method for prediction of flatness and skewness of compressible magnetohydrodynamic (MHD) turbulence. The knowledge of these quantities characterizes non-Gaussian properties of turbulence and can be used for verification of hypothesis on Gaussianity for the turbulent flow under consideration. Prediction accuracy of these quantities by means of LES method directly determines efficiency of reconstruction of probability density function (PDF) that depends on used subgrid-scale (SGS) parameterizations. Applicability of LES approach for studying of PDF properties of turbulent compressible magnetic fluid flow is investigated and potential feasibilities of five SGS parameterizations by means of comparison with direct numerical simulation results are explored. The skewness and the flatness of the velocity and the magnetic field components under various hydrodynamic Reynolds numbers, sonic Mach numbers, and magnetic Reynolds numbers are studied. It is shown that various SGS closures demonstrate the best results depending on change of similarity numbers of turbulent MHD flow. The case without any subgrid modeling yields sufficiently good results as well. This indicates that the energy pile-up at the small scales that is characteristic for the model without any subgrid closure, does not significantly influence on determination of PDF. It is shown that, among the subgrid models, the best results for studying of the flatness and the skewness of velocity and magnetic field components are demonstrated by the Smagorinsky model for MHD turbulence and the model based on cross-helicity for MHD case. It is visible from the numerical results that the influence of a choice subgrid parametrization for the flatness and the skewness of velocity is more essential than for the same characteristics of magnetic field.  相似文献   

10.
毛洁  王彦利  王浩 《力学学报》2018,50(6):1387-1395
热核聚变反应堆液态金属包层应用中的一个重要问题是液态金属在导电管中流动和强磁场相互作用产生的额外的磁流体动力学压降.这种磁流体动力学压降远远大于普通水力学压降.美国阿贡国家实验室ALEX研究小组,对非均匀磁场下导电管中液态金属磁流体动力学效应进行了实验研究,其实验结果成为液态金属包层数值验证的标准模型之一.液态金属包层在应用中会受到不同方向的磁场作用,本文以ALEX的非均匀磁场下导电方管中液态金属管流实验中的一组参数为基础,保持哈特曼数、雷诺数和壁面电导率不变,采用三维直接数值模拟的方法,研究了外加磁场与侧壁之间的倾角对导电方管内液态金属流动的速度、电流和压降分布的影响.研究结果表明:沿流向相同横截面上的速度、电流以及压力分布均随磁场的倾斜而同向旋转.倾斜磁场均匀段,横截面上的高速区位于平行磁场方向的哈特曼层和平行层交叉位置,压力梯度随磁场倾角的增大先增大后减小.倾斜磁场递减段,在三维磁流体动力学效应作用下,横截面上的高速射流位置向垂直磁场方向偏移.磁场递减段的三维磁流体动力学压降随磁场倾角的增大而增大.随磁场倾斜,截面上的射流峰值逐渐减小,二次流增强,引发层流向湍流的转捩.   相似文献   

11.
Study of the flow field around the large scale offshore structures under the action of waves and viscous currents is of primary importance for the scouring estimation and protection in the vicinity of the structures. But very little has been known in its mechanism when the viscous effects is taken into consideration. As a part of the efforts to tackle the problem, a numerical model is presented for the simulation of the flow field around a fixed vertical truncated circular cylinder subjected to waves and viscous currents based on the depth-averaged Reynolds equations and depth-averagedk-ɛ turbulence model. Finite difference method with a suitable iteration defect correct method and an artificial open boundary condition are adopted in the numerical process. Numerical results presented relate to the interactions of a pure incident viscous current with Reynolds numberRe=105, a pure incident regular sinusoidal wave, and the coexisting of viscous current and wave with a circular cylinder, respectively. Flow fields associated with the hydrodynamic coefficients of the fixed cylinder, as well as corresponding free surface profiles and wave amplitudes, are discussed. The present method is found to be relatively straightforward, computationally effective and numerically stable for treating the problem of interactions among waves, viscous currents and bodies. The project supported by the National Natural Science Foundation of China and Foundation of State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University.  相似文献   

12.
The two-dimensional motion of a cylinder in a viscous fluid between two parallel walls of a vertical channel is studied. It is found that when the cylinder moves very closely along one of the channel walls, it always rotates in the direction opposite to that of contact rolling along the nearest wall. When the cylinder is away from the walls, its rotation depends on the Reynolds number of the flow. In this study two numerical methods were used. One is for the unsteady motion of a sedimenting cylinder initially released from a position close to one of the channel walls, where the Navier-Stokes equations are solved for the fluid and Newton's equations of motion are solved for the rigid cylinder. The other method is for the steady flow in which a cylinder is fixed in a uniform flow field where the channel walls are sliding past the cylinder at the speed of the approaching flow, or equivalently a cylinder is moving with a constant velocity in a quiescent fluid. The flow field, the drag, the side force (lift), and the torque experienced by the cylinder are studied in detail. The effects of the cylinder location in the channel, the size of the channel relative to the cylinder diameter, and the Reynolds number of the flow are examined. In the limit when the cylinder is translating very closely along one of the walls, the flow in the gap between the cylinder and the wall is solved analytically using lubrication theory, and the numerical solution in the other region is used to piece together the whole flow field.This research was supported by NSF DMR91-20668 through the Laboratory for Research on the Structure of Matter at the University of Pennsylvania and from the Research Foundation of the University of Pennsylvania.  相似文献   

13.
We continue with the 1997 work of Noca et al. and offer some additional closed-form expressions (and their derivations) for the evaluation of time-dependent forces on a body in an incompressible, viscous, and rotational flow, which require only the knowledge of the velocity field (and its derivatives) in a finite and arbitrarily chosen region enclosing the body. In particular, we offer an expression for the force which only depends on the velocity field (and its derivatives) on thesurface of an arbitrary control volume. These expressions are particularly useful for experimental techniques like Digital Particle Image Velocimetry (DPIV) which provide time sequences of 2-D velocity fields but not pressure fields. For some common flow situations (freely moving objects, flexible bodies, flying and swimming animals, low Reynolds number flows, soap film tunnels), these techniques may be more viable than traditional methods (strain gages). The formulations can also be of some interest to the Computational Fluid Dynamics (CFD) community, especially when pressure is not evaluated explicitly, such as in vorticity-based algorithms. From a theoretical point of view, they provide an explicit relation between loading and flow structure. In the present work, the formulations are tested on a numerical flow simulation using a high-resolution vortex method and experimentally with DPIV on a circular cylinder flow.  相似文献   

14.
佟莹  夏健  陈龙  薛浩天 《力学学报》2022,54(1):94-105
采用浸没边界格子Boltzmann(immersed boundary-lattice Boltzmann,IB-LB)模型执行动边界绕流数值模拟时,信息交互界面和边界力计算格式直接影响流动求解器的数值精度和计算效率.基于隐式扩散界面,一种改进的直接力格式IB-LB模型被提出.边界力表达式基于欧拉/拉格朗日变量同一性准...  相似文献   

15.
The velocity, pressure, vorticity and streamfunction are computed in the Oseen hydrodynamic field of an unbounded fluid past a circular cylinder in the Reynolds Number range going from 0.4 to 12. The boundary condition is satisfied by means of the method of least squares that determines suitable coefficients for Faxén series. Particular investigation is made of the wake region in which calculations are made of flow patterns, velocity and vorticity distributions. It is shown that, attached vortices arise at the rear of the cylinder at Reynolds Number Re=3.025. Calculated drag coefficients are in good agreement with known results of the works of several authors up to a Reynolds Number of 20.  相似文献   

16.
An analysis has been carried out to study the effect of magnetic field on an electrically conducting fluid of second grade in a parallel channel. The coolant fluid is injected into the porous channel through one side of the channel wall into the other heated impermeable wall. The combined effect of inertia, viscous, viscoelastic and magnetic forces are studied. The basic equations governing the flow and heat transfer are reduced to a set of ordinary differential equations by using appropriate transformations for velocity and temperature. Numerical solutions of these equations are obtained with the help of Runge-Kutta fourth order method in association with quasi-linear shooting technique. Numerical results for velocity field, temperature field, skin friction and Nusselt number are presented in terms of elastic parameter, Hartmann number, Prandtl number and Reynolds number. Special case of our results is in good agreement with earlier published work.  相似文献   

17.
In order to reduce the drag of bodies in a viscous flow it has been proposed to apply to the surface exposed to the flow a layer of magnetic fluid, which can be retained by means of a magnetic field and thus act as a lubricant between the external flow and the body [1, 2]. In [1] the hydrodynamic drag of a current-carrying cylindrical conductor coated with a uniform layer of magnetic fluid was theoretically investigated at small Reynolds numbers. In order to simplify the equations of motion, the Oseen approximation was introduced for the free stream and the Stokes approximation for the magnetic fluid [3]. This approach has led to the finding of an exact analytic solution from which it follows that at Reynolds numbers Re 1 the drag of the cylinder can be considerably reduced if the viscosity of its magnetic-fluid coating is much less than the viscosity of the flow. The main purpose of the present study is to investigate, with reference to the same problem, how the magnetic-fluid coating affects the hydrodynamic drag at Reynolds numbers 1 Re 102–103, i.e., under separated flow conditions. In this case the simplifications associated with neglecting the nonlinear inertial terms in the Navier—Stokes equation are inadmissible, so that a solution can be obtained only by numerical methods.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 11–16, May–June, 1986.  相似文献   

18.
We numerically investigate flow-induced vibrations of circular cylinders arranged in a tandem configuration at low Reynolds number. Results on the coupled force dynamics are presented for an isolated cylinder and a pair of rigid cylinders in a tandem configuration where the downstream cylinder is elastically mounted and free to vibrate transversely. Contrary to turbulent flows at high Reynolds number, low frequency component with respect to shedding frequency is absent in laminar flows. Appearance and disappearance of the vorticity regions due to reverse flow on the aft part of the vibrating cylinder is characterized by a higher harmonic in transverse load, which is nearly three times of the shedding frequency. We next analyze the significance of pressure and viscous forces in the composition of lift and their phase relations with respect to the structural velocity. For both the isolated and tandem vibrating cylinders, the pressure force supplies energy to the moving cylinder, whereas the viscous force dissipates the energy. Close to the excitation frequency ratio of one, the ratio of transverse viscous force to pressure force is found to be maximum. In addition, movement of stagnation point plays a major role on the force dynamics of both configurations. In the case of isolated cylinder, displacement of the stagnation point is nearly in-phase with the velocity. During vortex-body interaction, the phase difference between the transverse pressure force and velocity and the location of stagnation point determines the loads acting on the cylinder. When the transverse pressure force is in-phase with velocity, the stagnation point moves to higher suction region of the cylinder. In the case of the tandem cylinder arrangement, upstream vortex shifts the stagnation point on the downstream cylinder to the low suction region. Thus a larger lift force is observed for the downstream cylinder as compared to the vibrating isolated cylinder. Phase difference between the transverse load and the velocity of the downstream cylinder determines the extent of upstream wake interaction with the downstream cylinder. When the cylinder velocity is in-phase with the transverse pressure load component, interaction of wake vortex with the downstream cylinder is lower compared to other cases considered in this study. We extend our parametric study of tandem cylinders for the longitudinal center-to-center spacing ranging from 4 to 10 diameter.  相似文献   

19.
Numerical experiments have been conducted to study the effect of magnetic Reynolds number on the steady, two‐dimensional, viscous, incompressible and electrically conducting flow around a circular cylinder. Besides usual Reynolds number Re, the flow is governed by the magnetic Reynolds number Rm and Alfvén number β. The flow and magnetic field are uniform and parallel at large distances from the cylinder. The pressure Poisson equation is solved to find the pressure fields in the entire flow region. The effects of the magnetic field and electrical conductivity on the recirculation bubble, drag coefficient, standing vortex and pressure are presented and discussed. For low interaction parameter (N<1), the suppression of the flow‐separation is nearly independent of the conductivity of the fluid, whereas for large interaction parameters, the conductivity of the fluid strongly influences the control of flow‐separation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper uses the element‐free Galerkin (EFG) method to simulate 2D, viscous, incompressible flows. The control equations are discretized with the standard Galerkin method in space and a fractional step finite element scheme in time. Regular background cells are used for the quadrature. Several classical fluid mechanics problems were analyzed including flow in a pipe, flow past a step and flow in a driven cavity. The flow field computed with the EFG method compared well with those calculated using the finite element method (FEM) and finite difference method. The simulations show that although EFG is more expensive computationally than FEM, it is capable of dealing with cases where the nodes are poorly distributed or even overlap with each other; hence, it may be used to resolve remeshing problems in direct numerical simulations. Flows around a cylinder for different Reynolds numbers are also simulated to study the flow patterns for various conditions and the drag and lift forces exerted by the fluid on the cylinder. These forces are calculated by integrating the pressure and shear forces over the cylinder surface. The results show how the drag and lift forces oscillate for high Reynolds numbers. The calculated Strouhal number agrees well with previous results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号