首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
材料的力学性能,尤其是在有限变形下所呈现的宏观各向异性,是材料结构设计和服役寿命考虑的关键因素。由于宏观模型不能较好地反映材料微观结构(晶粒的形貌和取向等)对宏观塑性各向异性的影响,因此,本文建立了能实际反映晶粒形貌的三维Voronoi模型,并基于晶体塑性理论对铝合金在有限变形下的响应进行计算。首先,建立反映材料微结构的代表性体积单元RVE模型进行计算,并与实验结果进行对比验证。然后,以单向拉伸为例,分析了有限变形过程中试件的晶粒形貌和取向分布等微观因素对宏观各向异性演化的影响,并从材料和结构两个层面讨论了微观结构对宏观力学性能的影响。结果表明,本文模型能够反映微观结构对宏观力学性能的影响,为实际生产制造领域构件的力学性能提供可靠的预测。  相似文献   

2.
微结构演化对镁合金材料力学性能有着显著的影响,为了揭示镁合金宏观塑性各向异性特性与非均匀孪生变形的关系,开展了不同路径下的单轴加载试验以及采用含滑移、孪生机制的晶体塑性本构模型对试验条件下的镁合金变形行为进行数值模拟研究。文中本构模型描述了滑移与孪生变形机制以及晶格转动的机制,同时研究采用三维微结构代表性有限元模型,其包含晶粒尺寸、晶向和晶界倾角等微结构参数。研究结果表明,轧制镁合金具有强烈的宏观塑性各向异性行为,并对这种镁合金塑性各向异性行为的模拟结果以及多晶织构的模拟演化结果与试验测量进行对比,结果都基本吻合。对孪生非均匀变形模拟分析表明,镁合金宏观塑性各向异性行为与滑移、孪生变形机制的不同启动组合紧密相关,同时多晶体内应力的非均匀分布受到孪生变形的严重影响。而不同晶粒尺寸的晶粒所发生的孪生变形有比较大的差异,造成孪晶变体在晶粒内的分布极不均匀。本研究可为通过微结构的合理配置来设计和控制材料的力学性能提供理论依据.  相似文献   

3.
晶粒数量对多晶集合体初始各向异性的影响   总被引:4,自引:0,他引:4  
Taylor类多晶晶体粘塑性模型被用于研究晶粒数量对随机分布多晶体拉伸塑性各向异性的影响。分别沿包含不同晶粒数量的多晶集合体的各方向进行单向拉伸数值模拟实验,得到多晶集合体各方向在一定等效应变下的等效应力,并用云图和等高线表示在多晶体的参考球面上。定义了描述多晶集合体各向异性程度的参考指标。讨论了三种确定晶体随机取向的方法。计算结果表明:晶粒数量有限的多晶集合体的应力应变响应仍有一定的各向异性,且随着晶粒数量增多,多晶集合体的各向异性程度降低;就所包含晶粒数相同的多晶集合体来说,在确定晶粒随机取向时,选取不同的方法对它的各向异性程度也有一定的影响。  相似文献   

4.
赵聃  朱祎国  胡平  张万喜 《计算力学学报》2014,31(4):501-505,544
以弹性变形梯度作为基本变量,结合热力学理论构造了单晶有限变形的热、力耦合计算模型。该模型考虑了温度、变温速率以及塑性耗散等条件对单晶有限变形的影响,相对于传统的以弹性变形梯度为基本变量的晶体塑性模型,算法能够体现温度效应的影响。采用隐式的积分方法对建立的控制方程进行计算以保证求解过程的稳定。以1100Al单晶为例计算了不同升温、降温速率,以及不同应变率影响下的材料应力-应变的响应。结果表明,模型能较好地反映变温过程中,单晶各向异性性质的演化以及应力、应变之间关系的变化。  相似文献   

5.
高玉魁  陶雪菲 《爆炸与冲击》2021,41(4):041401-1-041401-26
高速冲击表面处理过程中的应变率对金属材料的宏观力学性能和微观组织结构都具有重要影响。根据当前应变率效应的研究成果,从宏观与微观相结合的角度出发,综述了高速冲击表面处理过程中应变率对金属材料强度和塑性的影响规律,并重点阐述了不同应变率下金属材料内部微观组织结构的演变规律,主要包括晶粒结构、绝热剪切带、相变、位错组态和析出相以及变形孪晶等。此外,还分析了组织结构随应变率的演化和微观变形机制的转变对材料力学性能的强化和弱化机理。最后,对高速冲击表面处理梯度组织的变形特点进行了总结。提出了不同组织结构对材料性能影响的综合效应模型,以期为应变率效应的深入研究奠定基础。  相似文献   

6.
对建立在连续损伤力学和内变量理论基础上的两种晶体塑性损伤模型进行了比较,旨在比较两种模型在描述材料物理性能方面的适用性以及由加载而引起变形响应的不同之处.模拟结果显示,两种模型均能反映出塑性各向异性和损伤的演化;由加载而导致有限变形的响应不仅依赖于变形,而且也依赖于晶格取向;尽管两种模型在揭示单晶体的物理性能方面是不同的,但是在预测材料力学性能方面有着相同的预测趋势.  相似文献   

7.
考虑晶界效应的多晶体有限变形分析   总被引:1,自引:0,他引:1  
将晶界及其影响区综合考虑,建立了考虑晶界效应的力学模型,结合晶体塑性理论,利用有限变形有限元对多晶体进行数值模拟,数值结果显示了细观层次下晶粒变形场的特点,理论计算同实验定性一致。  相似文献   

8.
多晶体变形、应力的不均匀性及宏观响应   总被引:9,自引:0,他引:9  
张克实 《力学学报》2004,36(6):714-723
从单晶滑移变形分析的角度探讨多晶体塑性变形和应力的不均匀性及宏观力学响应:建议了 一种当前构形下以应力为基本变量的单晶黏塑性增量迭代计算方法;用Voronoi晶粒集合体 模型研究多晶体由于晶粒几何及取向的随机性造成的变形和应力的不均匀性, 进行了多晶集 合体的宏观响应和晶粒位向演化数值分析. 结果表明:(1)多晶体内等效塑性应变和应力分量在统计上呈现高斯分布,在应变硬化过程中, 随着塑性变形增加多晶体微观应力的统计变异系数会越来越大;(2)用Voronoi模型计算可得到沿最大剪应力方向的滑移变形带;(3)多晶体内最高三轴拉应力一般出现在晶界特别是三晶交界处;(4)Voronoi模型能用于织构分析.  相似文献   

9.
本文采用多晶塑性分析方法,设材料点包含一定数量的各向异性单晶晶粒并考虑晶粒尺寸的影响,计算材料点的应力和应变时利用了Taylor假设。模型引入考虑尺寸效应的晶体滑移硬化函数,同时针对晶体滑移引入背应力及其方向性硬化的描述,以反映不同晶粒尺寸材料在循环加载条件下的力学行为。利用该模型,本文第一作者采用显式格式编制了与ABAQUS商用有限元软件接口的用户材料子程序(VUMAT),实例计算证实该模型可以反映和描述多晶金属材料在材料反复加载条件下的循环塑性行为与尺寸效应。  相似文献   

10.
基于多尺度特征应变均匀化计算HCP多晶体塑性   总被引:1,自引:0,他引:1  
结合基于位错密度的晶体塑性模型与特征应变均匀化方法来分析HCP晶体结构材料的力学行为,拟开发一种计算模型用于有效捕捉以及预测微观与结构尺度的裂纹产生。首先,与传统的晶体塑性有限元相比,该多尺度模型可以提高计算效率并同时保持微观尺度的捕捉精度。其次,将模型与试验结果的差值为优化目标,在满足物理学定义的条件下得到合理的材料参数。最终,结构尺度的模拟显示该模型可以获取在结构尺度与微观晶粒尺度的潜在裂纹生长区域。  相似文献   

11.
The phenomenon of earing is investigated in the present study based on the theory of crystal plasticity with the dynamic explicit finite element program developed. Firstly texture analysis is carried out of rolled aluminium alloy Al5052 by means of X-ray technique. Then from the texture coefficients an analytical expression for the orientation distribution function (ODF) is derived making use of the computer algebraic language Mathematica4.0, which makes it easier to discretize the ODF into a series of Eulerian angles representing the distribution of lattices and further the preferred orientation (texture) of crystals of the original sheets. For the polycrystal model, the material is described using crystal plasticity where each material point in grains with each grain modelled as an FCC crystal with 12 distinct slip systems. The modified Taylor theory of crystal plasticity is used and only the initial texture is taken into consideration during large plastic deformation. Numerical simulation of earing has been performed for an aluminium sheet with texture and one with crystals exhibiting random distribution to demonstrate the effect of texture of materials on their plastic anisotropy and formability. Project supported by the National Natural Science Foundation of China (No. 59875025).  相似文献   

12.
The parameters for a crystal plasticity finite element constitutive law were calibrated for the aluminum–lithium alloy 2198 using micro-column compression testing on single crystalline volumes. The calibrated material model was applied to simulations of micro-cantilever deflection tests designed for micro-fracture experiments on single grain boundaries. It was shown that the load–displacement response and the local deformation of the grains, which was measured by digital image correlation, were predicted by the simulations. The fracture properties of individual grain boundaries were then determined in terms of a traction–separation-law associated with a cohesive zone. This combination of experiments and crystal plasticity finite element simulations allows the investigation of the fracture behavior of individual grain boundaries in plastically deforming metals.  相似文献   

13.
A hierarchical multilevel method is presented for the plastic deformation of polycrystalline materials with texture-induced anisotropy. It is intended as a constitutive material model for finite element codes for the simulation of metal forming processes or for the prediction of forming limits. It consists of macroscopic models of which the parameters are to be identified using the results of two-level (meso/macro) or three-level (micro/meso/macro) models. A few such two-level models are presented, ranging from the full-constraints Taylor model to the crystal-plasticity finite element models, including the grain interaction models GIA, LAMEL and ALAMEL. Validation efforts based on experimental cold rolling textures obtained for steel and aluminium alloys are shortly discussed. An assessment is also given of the assumptions of the LAMEL and ALAMEL models concerning stress and strain rate heterogeneity at grain boundaries, based on the results of a crystal plasticity finite element study. Finally a recent three-level model which also looks at the microscopic level (dislocation substructure) is discussed.  相似文献   

14.
赵伯宇  胡伟平  孟庆春 《力学学报》2021,53(5):1355-1366
材料内部的解理、滑移面剥离等细观损伤是引起宏观失效的根源, 从细观尺度研究损伤的发生和发展有助于深入认识材料的变形和失效过程. 本文基于晶体塑性理论, 从滑移系的受力和变形出发研究材料的细观损伤, 建立了考虑滑移面分解正应力的细观损伤模型, 为晶体材料解理断裂的分析提供了新方法. 首先, 在晶体弹塑性变形构型的基础上引入损伤变形梯度张量的概念, 从变形运动学着手建立了考虑损伤能量耗散的本构方程, 并推导了塑性流动方程与损伤演化方程; 然后, 建立了相应的数值计算方法, 给出了应力与状态变量的更新算法, 推导了Jacobian矩阵的表达式; 接着, 以$[100]$取向的单晶铜材料为例, 通过有限元计算与试验结果的对比, 并采用粒子群优化算法标定了11个材料细观参数; 最后, 将所提细观损伤模型应用于RVE单轴拉伸过程的模拟, 得到了考虑损伤影响的应力应变曲线, 并分析了材料的塑性流动与损伤演化过程. 结果表明, 本文所提模型能够计算材料在受载过程中的损伤累积效应, 合理反映晶体材料的细观损伤机理.   相似文献   

15.
Finite element modeling of tube hydroforming requires information about the anisotropy of the extruded aluminum tube. Unlike sheet metals, the complex geometry of extruded tubes makes it difficult, except in extrusion direction, to directly measure material properties. Therefore, polycrystalline models provide a good alternative for calculating the anisotropy of the tube in all directions and under various loading conditions. Using a rate-independent single crystal yield surface and rigid plasticity, a Taylor-type polycrystalline model was developed and implemented into ABAQUS/Explicit finite element (FE) code using VUMAT. The constitutive model was then used to calculate the crystallographic texture evolution during the hydroforming of an extruded aluminum tube. Initial crystallographic texture measured using orientation imaging microscopy (OIM) and uniaxial tensile test data obtained along the extrusion direction were input to this FEA model. In order to efficiently and practically simulate the tube hydroforming process using the polycrystalline model, sensitivity to the number of grain orientation, total simulation time, and number of finite elements were studied. Predicted results agreed very well with experimentally measured strain obtained from tube hydroforming process.  相似文献   

16.
A couple stress crystal plasticity formulation that incorporates interfacial couple stress energy was proposed in terms of the virtual work-rate principle for finite element method. By applying the assumed constitutive models of couple stress at the grain boundary as well as the grain interior, finite element simulations were conducted for various crystal models, with different grain subdivision models to examine how plastic deformation work is affected by grain subdivision from the interfacial couple stress energy effect.Finite element simulation results showed that the amount of predicted plastic deformation work depends on grain subdivision, and that the amount of work can be minimized for a particular grain subdivision. We inferred from the simulation results that actual grain subdivision might correspond to the minimum amount of plastic deformation work and, if this correlation is validated, actual grain subdivision might be predicted based on the interfacial energy incorporated couple stress crystal plasticity.  相似文献   

17.
This paper describes the application of a coupled crystal plasticity based microstructural model with an anisotropic yield criterion to compute a 3D yield surface of a textured aluminum sheet (continuous cast AA5754 aluminum sheet). Both the in-plane and out-of-plane deformation characteristics of the sheet material have been generated from the measured initial texture and the uniaxial tensile curve along the rolling direction of the sheet by employing a rate-dependent crystal plasticity model. It is shown that the stress–strain curves and R-value distribution in all orientations of the sheet surface can be modeled accurately by crystal plasticity if a “finite element per grain” unit cell model is used that accounts for non-uniform deformation as well as grain interactions. In particular, the polycrystal calculation using the Bassani and Wu (1991) single crystal hardening law and experimental electron backscatter data as input has been shown to be accurate enough to substitute experimental data by crystal plasticity data for calibration of macroscopic yield functions. The macroscopic anisotropic yield criterion CPB06ex2 (Plunkett et al., 2008) has been calibrated using the results of the polycrystal calculations and the experimental data from mechanical tests. The coupled model is validated by comparing its predictions with the anisotropy in the experimental yield stress ratio and strain ratios at 15% tensile deformation. The biaxial section of the 3D yield surface calculated directly by crystal plasticity model and that predicted by the phenomenological model calibrated with experimental and crystal plasticity data are also compared. The good agreement shows the strength of the approach. Although in this paper, the Plunkett et al. (2008) yield function is used, the proposed methodology is general and can be applied to any yield function. The results presented here represent a robust demonstration of implementing microscale crystal plasticity simulation with measured texture data and hardening laws in macroscale yield criterion simulations in an accurate manner.  相似文献   

18.
扭转是一种常用的冷作硬化方法。本文通过实心圆轴扭转实验和预扭试件的单向拉伸实验,研究了扭转塑性变形程度对6063铝合金拉伸力学性能的影响。通过理论研究和硬度分析探究了造成这一影响的内在机理。结果表明,试件扭转后其内部形成的以屈服强度为特征参数的梯度结构,是造成预扭试件力学性能得到改善的根本原因。并且,扭转不同的角度,材料内部产生的梯度结构也是不同的。而不同的梯度结构对试件力学性能的影响则表现为后继拉伸屈服强度随预扭角度的增大而增大。为了预测预扭试件的后继拉伸力学行为,验证前述结论的正确性,建立了由内到外屈服强度逐渐变化的有限元模型。此模型代表了预扭转变形试件,对其施加位移载荷,模拟后继单向拉伸加载过程。模拟所得材料力学性能随扭转角的变化趋势与实验结果基本吻合,从而验证了扭转冷作硬化后,圆轴试件内部产生了以屈服强度为特征参数的梯度结构这一结论。同时,也提供了一种有效的预测材料扭转后拉伸力学性能的数值模拟方法。  相似文献   

19.
Magnesium alloy sheets have been extending their field of applications to automotive and electronic industries taking advantage of their excellent light weight property. In addition to well-known lower formability, magnesium alloys have unique mechanical properties which have not been thoroughly studied: high in-plane anisotropy/asymmetry of yield stress and hardening response. The reason of the unusual mechanical behavior of magnesium alloys has been understood by the limited symmetry crystal structure of HCP metals and thus by deformation twinning. In this paper, the phenomenological continuum plasticity models considering the unusual plastic behavior of magnesium alloy sheet were developed for a finite element analysis. A hardening law based on two-surface model was further extended to consider the general stress–strain response of metal sheets including Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous in-plane tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. In terms of the anisotropy and asymmetry of the initial yield stress, the Drucker–Prager’s pressure dependent yield surface was modified to include the anisotropy of magnesium alloy. The numerical formulations and characterization procedures were also presented and finally the correlation of simulation with measurements was performed to validate the proposed theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号