首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
韩旭  何国建  方红卫  符松 《力学学报》2015,47(5):713-721
基于大涡模拟数据,研究了理想粗糙透水床面明渠湍流的时空平均特性. 考虑到空间异构性,对比分析了不同位置的时空平均流速、雷诺剪应力、构造剪应力、脉动幅度的垂线分布. 结果表明:第一,顶层床面之上,空间异构性的影响较小,不同位置的双平均流速符合类似的对数分布,但由于透水床面影响,卡门常数较不透水床面小;在床面附近,空间异构性影响较大,不同位置的双平均流速分别符合线性分布与多项式分布;在透水河床内部,靠近底层球孔的双平均流速为上部球孔双平均流速的1.55 倍. 第二,床面之上,雷诺剪应力占总剪应力的95% 以上,占有主体地位;床面附近,紊动较大,构造剪应力不能忽略,其值大约占总剪应力的15%.由于流场的各向异性,纵向与垂向的脉动幅度有所差异.   相似文献   

2.
带滩槽地形的连续弯道中纵向流速横向分布解析   总被引:1,自引:0,他引:1  
本文基于沿水深积分的动量方程,假定二次流项和弯道附加应力项沿横断面呈线性分布,提出了预测弯道垂线平均纵向流速的解析计算方法,进一步提出了河槽区和河滩区垂线平均纵向流速沿断面分布的求解模式,并将其应用于带滩槽地形的反向连续弯道水槽中. 根据实测数据率定计算参数,该模式可计算不同出口水深条件下断面垂线平均纵向流速分布,计算结果与实测数据吻合良好.分析了线性分布假设中参数随水深变化的取值规律和沿横断面分布特点,并对参数进行了敏感性分析,分析表明线性假设中一次项系数分区位置对流速峰值的大小和位置影响较大,常数项根据地形横比降变化进行分区取值,流速计算值对常数项在水平段和斜坡段分区位置较为敏感,并根据参数的敏感度提出了参数沿水槽的均值作为参考值.讨论了动量方程中二次流项和弯道附加应力项沿弯道的横向分布规律,进一步认识线性假设的适用范围,结果表明线性假设在本文试验水槽中适用于弯道沿程.研究成果有助于认识带滩槽地形的连续弯道纵向流速分布特征及其形成机制.   相似文献   

3.
应用平面二维悬沙数学模型对方柱尾流区的泥沙输运及床面调整进行了数值模拟,并对重要物理参数做了分析说明。数值计算采用时间分裂一全隐式有限差分格式,流场的计算基于沿水深平均的RANS方程。通过系统的数值模拟,揭示了不同来流情况下,方柱尾流区的流态变化,及与之相应的床面变化规律,并对不同流态下的泥沙运动作了分析。计算结果表明在方柱尾流区,不同的流场流态对尾流区的床面调整有明显影响。流场较弱的情况下,尾流区中湍动强度相应较弱,此时悬浮泥沙由于流速减小而普遍落淤,床面应力的减小也致使床面冲刷量减小。随着流场强度的逐渐增大,尾流区中湍动强度相应增强,床面应力增大,同时湍流的强烈交换作用增强了对泥沙的输运作用,床面变化不再是简单的淤积状态,部分区域出现了冲刷。  相似文献   

4.
不同高度柔性植被对坡面流水动力特性的影响   总被引:1,自引:0,他引:1  
基于系列坡面流试验,研究了柔性植被的高度(4 cm,8 cm和15 cm)对坡面流水动力特性的影响.研究表明:覆盖率相同时,4 cm植被阻水效果最好,15cm最差,而该差异随着坡度增大而减小.4 cm和8 cm植被覆盖时,水流阻力系数随雷诺数增加先减小后增加,这是由于雷诺数较小时水流阻力主要以床面阻力为主,雷诺增大时主要以植被阻力为主.另外,通过染色剂法测得光滑床面平均流速修正系数为0.2~0.4,有植被覆盖床面为0.4~0.8,且修正系数随平均流速增大而增大.  相似文献   

5.
有限水深中二维湍流边界层的发展   总被引:1,自引:0,他引:1  
有限水深中湍流边界层主要是指水流在重力作用下绕建筑物流动时的边界层现象。它区别于一般在无限流场中绕流物体的边界层。它的特点是具有自由表面,边界层有可能发展至全部水深,质量力不容忽视,受到外流流速变化的影响。本实验采用激光流速仪量测二维明渠水流沿程各断面的流速分布,根据实验结果,分析研究了有限水深、粗糙壁面条件下,二维湍流边界层的流速分布特征和厚度发展规律,以及孤立粗糙体对此二者的影响。   相似文献   

6.
及春宁  刘丹青  许栋 《力学学报》2015,47(4):613-623
应用大涡模拟、"点球" 浸入边界法和基于"事件驱动" 模型和"弹簧-阻尼" 模型的颗粒离散元法, 数值模拟了明渠湍流中沙纹的演变. 通过对不同谢尔兹数下无沙纹床面的推移质输沙率进行计算, 并与经典输沙率公式进行对比, 验证了模型的精度和可靠性. 随后, 对明渠湍流中沙纹床面的演变过程进行了数值模拟, 计算了有沙纹床面的推移质输沙率、沙纹长度和高度、等效床面高度的最大值、最小值和平均值、沙纹形状阻力、体积流速随时间的变化曲线. 研究发现:初始平整的床面在较短的时间内(tUb=h≈100) 发展出数条沙纹, 随后沙纹逐渐发展, 在tUb=h为1 600~2 000 时, 沙纹发生合并. 在沙纹数量不变的条件下, 沙纹高度随时间近似呈线性增长, 而沙纹的长度的平均值却保持恒定. 随着沙纹高度的增大, 输沙率和体积流速逐渐降低, 沙纹形状阻力则逐渐增大;当沙纹发生合并时, 沙纹高度快速增加, 输沙率、体积流速和沙纹形状阻力也出现了大幅跳跃. 在同等的水流强度条件下, 有沙纹床面的输沙率小于平整床面的输沙率.   相似文献   

7.
采用气液两相流混合模型对不同交汇角度下等宽明渠交汇口三维水力特性进行了数值模拟研究。选取大涡模型(Large Eddy Model)封闭两相流时均方程,求解速度与压力耦合方程组时使用半隐式SIMPLE(Semi-Implicit Method for Pressure-Linked Equations)算法,模拟自由水面采用VOF(Volume of Fluid)法。将交汇角度为90°时采用大涡模型计算得到的纵向截面水面线和不同测线上的速度分布与文献中的试验结果相比较,两者吻合良好,且水面线高度误差在4.2%以内,由此可见大涡模型是模拟交汇口水力特性的有效方法。进而将大涡模型用于模拟交汇角度为30°、45°、60°的交汇口水流,得到交汇口处的水深变化及流场的分布规律,并定量分析了交汇口下游各横断面流速不均匀系数的分布规律。结果表明:在整体上交汇角度越大,交汇口各特征横断面流速不均匀系数越大,即水流流速分布越不均匀。  相似文献   

8.
定床弯道内水沙两相运动的数值模拟   总被引:1,自引:0,他引:1  
刘诚  沈永明 《力学学报》2009,41(3):318-328
在适体同位网格中采用非正交曲线坐标系下的三维k-ε-kp固液两相双流体湍流模型研究弯道内水流和悬浮泥沙运动,主要计算了试验室S型水槽内清水流动的三维流场、120°弯道内水沙两相流动中底沙与底流的运动轨迹以及S型水槽内水沙两相流动的两相流场和泥沙浓度场. 对于S型水槽内清水流动,数值结果与试验结果吻合良好. 120°弯道内水沙两相流动中固液两相的运动轨迹在弯道直线段基本重合,在弯道内泥沙轨迹逐步偏离水体轨迹,其偏离程度随泥沙粒径增大而增大. 从S型水槽内水沙两相流动计算结果中发现泥沙纵向流速在壁面附近比水流纵向速度大,在远离壁面区域比水流纵向速度小;弯道内泥沙横向流速比水流横向流速小;垂向流速在直线段和泥沙沉速相当,在弯道内受螺旋水流影响而变化;两相流速差别随泥沙粒径增大而变大;泥沙浓度呈现下浓上稀的分布,在弯道内横向断面上呈现凸岸大凹岸小的分布,泥沙浓度随泥沙粒径增大而减小.   相似文献   

9.
根据已有文献对附壁射流区流速分布和壁面阻力的试验成果,分析了自由水跃区断面流速分布和最大流速沿程分布规律;首次根据边界层的动量积分方程分析了水跃主体段的射流厚度、水跃区的壁面切应力系数、壁面阻力系数的变化规律;给出了边界层厚度、壁面局部阻力系数、壁面阻力系数、平均壁面阻力系数的计算方法,并将计算结果与已有文献的试验资料进行了比较。结果表明:由本文式(9)和式(26)得到的数据与文献中的试验数据吻合较好;在Fr1≥5.45时,式(29)的计算结果与试验较吻合,在Fr1?5.45时,其计算结果与试验偏差较大;采用本文公式(34)计算水跃的共轭水深,与文献所得结果的最大误差为3.643%。  相似文献   

10.
为更准确地把握交汇角对分离区三维几何特性的影响,建立了不同角度的交汇水槽模型并进行数值模拟。采用大涡模拟(LES)方法求解交汇区的湍流流场,并基于平衡层模型的Werner壁面函数法处理近壁区流场。模拟所得垂向流速分布及分离区尺寸等结果与实测资料吻合程度较高。以90°交汇水槽为例较详尽地分析了分离区的三维几何特性,并从流场结构角度对其形成机理进行了剖析。随后聚焦于不同交汇角度下分离区的三维几何特性,给出了交汇角对不同水深层面分离区各几何参数的影响。研究结果显示:交汇口的分离区三维几何特性与流场结构有较强的关联性,分离区宽度沿水深的分布规律是分离区内外的流向涡及与之伴随的象限事件作用的结果。随着交汇角的增大,各水深层面的分离区长度基本呈增大趋势;当交汇角达到105°时,各水深层面分离区长度达到最大值,其原因是受干流顶冲作用,支流的实际入流角将小于交汇角,当交汇角为90°时,支流入汇对分离区长度的影响达到最大;随着交汇角的增大,各水深层面的分离区宽度总体呈增大趋势,显示出与90°交汇水槽相似的分布特性;随着交汇角的增大,各水深层面的分离区对称系数逐渐减小,这是分离区附近水平绕流涡的三维取向和分离区的长度变化共同作用的结果。  相似文献   

11.
The theory of poroelasticity is introduced to study the hydraulic properties of the steady uniform turbulent flow in a partially vegetated rectangular channel. Plants are assumed as immovable media. The resistance caused by vegetation is expressed by the theory of poroelasticity. Considering the influence of a secondary flow, the momentum equation can be simplified. The momentum equation is nondimensionalized to obtain a smooth solution for the lateral distribution of the longitudinal velocity. To verify the model, an acoustic Doppler velocimeter (ADV) is used to measure the velocity field in a rectangular open channel partially with emergent artificial rigid vegetation. Comparisons between the measured data and the computed results show that the method can predict the transverse distributions of stream-wise velocities in turbulent flows in a rectangular channel with partial vegetation.  相似文献   

12.
By choosing a PVC slice to simulate flexible vegetation, we carried out experiments in an open channel with submerged flexible vegetation. A 3D acoustic Doppler velocimeter (micro ADV) was used to measure local flow velocities and Reynolds stress. The results show that hydraulic characteristics in non-vegetation and vegetation layers are totally different. In a region above the vegetation, Reynolds stress distribution is linear, and the measured velocity profile is a classical logarithmic one. Based on the concept of new-riverbed, the river compression parameter representing the impact of vegetation on river is given, and a new assumption of mixing length expression is made. The formula for time-averaged velocity derived from the expression requires less parameters and simple calculation, and is useful in applications.  相似文献   

13.
Acoustic Doppler Velocimetry (ADV) can measure flow velocities in three directions in experimental facilities and field applications. Based on the Doppler shift effect, ADV can accurately resolve the quasi-instantaneous flow field at frequencies of up to approximately 200 Hz. However, this technique is sensitive to operating conditions that can lead to contaminated signals containing large amplitude spikes, a disadvantage of ADV. Aliasing of the Doppler signal creates these spikes. Such a situation occurs when large particles intersect the sampling volume or acoustic waves. For example during the characterization of river velocities, sediments floating near the riverbed cause aliasing from particles, and more importantly, surface entrained air bubbles contaminate the ADV signal. Spikes due to air bubbles not only increase the standard deviation of the velocity, but also corrupt the autocorrelation and power spectra. As some of these spikes appear like velocity fluctuations, developing accurate despiking procedures is an important requirement during post-processing of ADV velocity measurements in bubbly flow applications. A new hybrid method is introduced which has advantages over conventional despiking methods such as the acceleration thresholding method and the phase-space thresholding method when using ADV in bubbly flow. ADV river velocity measurements near kinetic turbines demonstrate the proposed method. This method is applicable to other bubbly flow applications to characterize the liquid phase using ADV.  相似文献   

14.
An idealized parallel flow caused by a lateral bed roughness difference due to the partial vegetation across a channel is investigated. Similar to the flow in a compound channel, there are mixing layers adjacent to the interface between the vegetation and the non-vegetation lanes, and a lateral momentum exchange occurs between the slow-moving water in the former lane and the fast-moving water in the latter lane. Under a uniform flow condition, the three-dimensional (3D) instantaneous velocities of two cases with different discharges and water depths are measured with a 16MHz acoustic Doppler velocimeter (micro ADV). The longitudinal variation of the streamwise velocity and the vertical variation of the Reynolds stress are analyzed. A quadrant analysis is carried out to investigate the outward and inward interaction, ejection, and sweep phenomenon caused by the vegetation variation across the channel. The results show that the flow characteristics in the vegetation lane are similar to those in an open channel fully covered with submerged vegetation, and the flow characteristics in the smooth non-vegetation lane are similar to those in a free open channel. For the cases studied here, the width of the mixing region is about 10% of the channel width, and the mixing region is mainly on the non-vegetation half.  相似文献   

15.
The construction of an integrated numerical model is presented in this paper to deal with the interactions between vegetated surface and saturated subsurface flows. A numerical model is built by integrating the previously developed quasi-three-dimensional (Q3D) vegetated surface flow model with a two-dimensional (2D) saturated groundwater flow model. The vegetated surface flow model is constructed by coupling the explicit finite volume solution of 2D shallow water equations (SWEs) with the implicit finite difference solution of Navier-Stokes equations (NSEs) for vertical velocity distribution. The subsurface model is based on the explicit finite volume solution of 2D saturated groundwater flow equations (SGFEs). The ground and vegetated surface water interaction is achieved by introducing source-sink terms into the continuity equations. Two solutions are tightly coupled in a single code. The integrated model is applied to four test cases, and the results are satisfactory.  相似文献   

16.
The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item, The compound channel is divided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vegetated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical solution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.  相似文献   

17.
In this work, structural finite element analyses of particles moving and interacting within high speed compressible flow are directly coupled to computational fluid dynamics and heat transfer analyses to provide more detailed and improved simulations of particle laden flow under these operating conditions. For a given solid material model, stresses and displacements throughout the solid body are determined with the particle–particle contact following an element to element local spring force model and local fluid induced forces directly calculated from the finite volume flow solution. Plasticity and particle deformation common in such a flow regime can be incorporated in a more rigorous manner than typical discrete element models where structural conditions are not directly modeled. Using the developed techniques, simulations of normal collisions between two 1 mm radius particles with initial particle velocities of 50–150 m/s are conducted with different levels of pressure driven gas flow moving normal to the initial particle motion for elastic and elastic–plastic with strain hardening based solid material models. In this manner, the relationships between the collision velocity, the material behavior models, and the fluid flow and the particle motion and deformation can be investigated. The elastic–plastic material behavior results in post collision velocities 16–50% of their pre-collision values while the elastic-based particle collisions nearly regained their initial velocity upon rebound. The elastic–plastic material models produce contact forces less than half of those for elastic collisions, longer contact times, and greater particle deformation. Fluid flow forces affect the particle motion even at high collision speeds regardless of the solid material behavior model. With the elastic models, the collision force varied little with the strength of the gas flow driver. For the elastic–plastic models, the larger particle deformation and the resulting increasingly asymmetric loading lead to growing differences in the collision force magnitudes and directions as the gas flow strength increased. The coupled finite volume flow and finite element structural analyses provide a capability to capture the interdependencies between the interaction of the particles, the particle deformation, the fluid flow and the particle motion.  相似文献   

18.
 We investigate the utility of particle imaging velocimetry (PIV) for performing kinematic measurements in wet aqueous foam with a liquid film beneath it. The flow velocities are measured near the walls of a square cross-section horizontal duct. The flow velocities are useful for validating the rheological models. We show that there is a discrepancy between the velocity profiles in the wet foam and the Bingham plastic model of flow. The velocity measurements reveal a more complex flow pattern, which may be analysed following three different regimes: a plug flow, a shear flow in a vertical plane and a three-dimensional shear flow. The transition between the plug flow and the shear flows may be explained by a shear-induced migration of bubbles. Received: 25 April 2000 / Accepted: 26 February 2001  相似文献   

19.
The acoustic Doppler velocimeter (ADV) is widely used for the characterization of fluid flow. Secondary flows (“acoustic streaming”) generated by the ADV’s acoustic pulses may affect the accuracy of measurements in experiments with small velocities. We assessed the impact of acoustic streaming on flow measurement using particle image velocimetry. The probes of two different ADVs were successively mounted in a tank of quiescent water. The probes’ ultrasound emitters were aligned with a laser light sheet. Observed flow was primarily in the axial direction, accelerating from the ultrasound emitter and peaking within centimeters of the velocimeter sampling volume before dropping off. We measured the dependence of acoustic streaming velocity on ADV configuration, finding that different settings induce streaming ranging from negligible to more than 2.0 cm s−1. From these results, we describe cases where acoustic streaming affects velocity measurements and also cases where ADVs accurately measure their own acoustic streaming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号