首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells  相似文献   

2.
The idea of quasi-Green's function method is clarified by considering a free vibration problem of the simply-supported trapezoidal shallow spherical shell. A quasi- Green's function is established by using the fundamental solution and boundary equation of the problem. This function satisfies the homogeneous boundary condition of the prob- lem. The mode shape differential equations of the free vibration problem of a simply- supported trapezoidal shallow spherical shell are reduced to two simultaneous Fredholm integral equations of the second kind by the Green formula. There are multiple choices for the normalized boundary equation. Based on a chosen normalized boundary equa- tion, a new normalized boundary equation can be established such that the irregularity of the kernel of integral equations is overcome. Finally, natural frequency is obtained by the condition that there exists a nontrivial solution to the numerically discrete algebraic equations derived from the integral equations. Numerical results show high accuracy of the quasi-Green's function method.  相似文献   

3.
The idea of quasi-Green’s function method is clarified by considering a free vibration problem of the simply-supported trapezoidal shallow spherical shell. A quasi-Green’s function is established by using the fundamental solution and boundary equation of the problem. This function satisfies the homogeneous boundary condition of the prob-lem. The mode shape differential equations of the free vibration problem of a simply-supported trapezoidal shallow spherical shell are reduced to two simultaneous Fredholm integral equations of the second kind by the Green formula. There are multiple choices for the normalized boundary equation. Based on a chosen normalized boundary equa-tion, a new normalized boundary equation can be established such that the irregularity of the kernel of integral equations is overcome. Finally, natural frequency is obtained by the condition that there exists a nontrivial solution to the numerically discrete algebraic equations derived from the integral equations. Numerical results show high accuracy of the quasi-Green’s function method.  相似文献   

4.
This paper is concerned with the transient deformation of functionally graded (FG) shallow spherical shells subjected to time-dependent thermomechanical load. Based on Timoshenko- Mindlin hypothesis and yon Karman nonlinear theory, a set of nonlinear governing equations of motion for FG shallow spherical shells in regard to transverse shear deformation and all the inertia terms are established using Hamilton's principle. The collocation point method and Newmark- beta scheme in conjunction with the finite difference method are adopted to solve the governing equations of motion and the unsteady heat conduction equation numerically. In the numerical examples, the transient deflection and stresses of FG shallow spherical shells with various material properties under different loading conditions are presented.  相似文献   

5.
It is extremely difficult to obtain an exact solution of von Karman’s equations because the equations are nonlinear and coupled. So far many approximate methods have been used to solve the large deflection problems except that only a few exact solutions have been investigated but no strict proof on convergence is presented yet. In this paper, first of all, we reduce the von KÁrmÁn’s equations to equivalent integral equations which are nonlinear, coupled and singular. Secondly the sequences of continuous function with general form are constructed using iterative technique. Based on the sequences to be uniformly convergent, we obtain analytical formula of exact solutions to von Karman’s equations related to large deflection problems of circular plate and shallow spherical shell with clamped boundary subjected to a concentrated load at the centre.  相似文献   

6.
The idea of Green quasifunction method is clarified in detail by considering a free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation.A Green quasifunction is established by using the fundamental solution and boundary equation of the problem.This function satisfies the homogeneous boundary condition of the problem.The mode shape differential equation of the free vibration problem of simply-supported trapezoidal shallow spherical shell on Winkler foundation is reduced to two simultaneous Fredholm integral equations of the second kind by Green formula.There are multiple choices for the normalized boundary equation.Based on a chosen normalized boundary equation, the irregularity of the kernel of integral equations is avoided.Finally, natural frequency is obtained by the condition that there exists a nontrivial solution in the numerically discrete algebraic equations derived from the integral equations.Numerical results show high accuracy of the Green quasifunction method.  相似文献   

7.
Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherical shell under a uniformly distributed pressure are derived by using coordinate transformation means and the principle of stationary complementary energy. The characteristic relationship and critical buckling pressure for the shell with two types of boundary conditions are obtained by taking the modified iteration method. Effects of geometrical parameters on the buckling behavior are also discussed.  相似文献   

8.
In this paper, the nonlinear equations of motion for shallow spherical shells with axisymmetric deformation including transverse shear are derived. The nonlinear static and dynamic response and dynamic buckling of shallow spherical shells with circular hole on elastically restrained edge are investigated. By using the orthogonal point collocation method for space and Newmark-β scheme for time, the displacement functions are separated and the nonlinear differential equations are replaced by linear algebraic equations to seek solutions. The numerical results are presented for different cases and compared with available data.  相似文献   

9.
This paper deals with the axisymmetrical deformation of shallow shells in largedeflection,which are in conjunction with linear elastic structures at the boundary.A methodof mixed boundary condition for this problem is introduced.then the problem of a compositestructure is transformed into a problem of a single structure and the integral equations aregiven.The perturbation method is used to obtain the solutions and an example of compositestructure consisting of a shallow spherical and a cylindrical shell is presented.  相似文献   

10.
The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of yon Ktirrntin and the theory of thermoelusticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin ‘ s technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors us well us boundary conditions on thermoelustically coupled nonlinear vibration behaviors are discussed.  相似文献   

11.
IntroductionCorrugateddiaphragmisatypeofelasticthinshells .Itsdesignisverycomplicatedbecauseoftoomanyparametersthatinfluenceeachother.Inanumberofinstrumentsmeasuringdisplacements,corrugateddiaphragmissubjectedtoelasticdisplacementthatisatleastthesameorderasitsthickness,sothatitisnecessarytousegeometricalnonlineartheoryofthinshellstoanalyze.Sofarasweknow ,inmostcases,investigatorsdiscussedonlytheproblemofcorrugateddiaphragmwithuniformanddensecorrugationsundertheactionofaunique(uniformlyorconcen…  相似文献   

12.
均布载荷作用下带边缘大波纹膜片的非线性弯曲   总被引:6,自引:0,他引:6  
袁鸿  刘人怀 《力学学报》2003,35(1):14-20
采用轴对称旋转壳体的简化Reissner方程,研究了在均布载荷作用下具有硬中心的带边缘大波纹膜片的非线性弯曲问题.应用积分方程方法,获得了具有夹紧固定和滑动固定两种外边界的膜片的特征关系,即荷载-中心挠度曲线.作为算例,给出了夹紧固定膜片中的应力分布.  相似文献   

13.
采用轴对称旋转壳体的简化Reissner方程,研究了在均布载荷作用下具有光滑中心波纹膜片的非线性弯曲问题。应用格林函数方法,波纹膜片的非线性边值问题化为了非线性积分方程的求解。为了求解积分方程并防止发散,一个插值参数被引入到迭代格式中。计算表明,当载荷很小时,任何插值参数值均能保证迭代的收敛性,取插值参数值接近或等于1获得较快的收敛速度,而当载荷较大时,插值参数值不能取得过大。绘出了波纹膜片的特征曲线,得到的特征曲线可供设计参考。可以断言,当载荷不大时,特征曲线是近似线性的,随着载荷的增大,特征曲线开始向上弯曲,明显偏离线性。本文中提出的解决方法适应于任意轴向截面的波纹壳体。  相似文献   

14.
Based on the nonlinear theory of shallow spherical thick shells and the damage mechanics, a set of nonlinear equations of motion for the laminated shallow spherical thick shells with damage subjected to a normal concentrated load on the top are established. According to Hertz law, the contact force acted upon the shells is determined due to the impact of a mass, and it is related to the mass and initial velocity of the striking object, the geometrical and physical character of the shell. By using the finite difference method and the time increment procedure, the nonlinear equations are resolved. In the numerical examples, the effects of the damage, the initial velocity, and mass of the striking object, the shells’ geometrical parameters on the dynamic responses and dynamic buckling of the laminated shallow spherical thick shells are discussed. Research of Y. Fu, Z. Gao and F. Zhu was supported by National Natural Science Foundation of China (No. 10572049).  相似文献   

15.
以简支梯形底扁球壳的弯曲问题为例,详细阐明了准格林函数方法的思想.即利用问题的基本解和边界方程构造一个准格林函数,这个函数满足了问题的齐次边界条件,采用格林公式将简支扁球壳弯曲问题的控制微分方程化为两个互相耦合的第二类Fredholm积分方程.边界方程有多种选择,在选定一种边界方程的基础上,可以通过建立一个新的边界方程...  相似文献   

16.
波纹壳是传感器弹性元件的一类重要形式,也是精密仪器仪表弹性元件中的一类重要形式。由于波纹壳形状复杂、参数众多、厚度薄,对其进行非线性分析非常重要同时也是十分困难的。本文考虑一种在传感器弹性元件中有重要应用价值的正弦波纹浅球壳体,将这种壳体视为结构上的圆柱正交异性扁球壳,根据Andryewa的思想,分别得到了正弦波纹壳径向、环向在拉伸、弯曲下的等价的四个各向异性参数;建立了正弦波纹扁球壳的非线性强迫振动微分方程;得到了正弦波纹扁球壳非线性强迫振动的共振周期解及幅频特性曲线。  相似文献   

17.
This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitude-frequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.  相似文献   

18.
集中载荷作用下具有光滑中心波纹膜片的非线性分析   总被引:4,自引:0,他引:4  
袁鸿  张湘伟 《力学季刊》2003,24(1):124-128
波纹膜片是一种薄壳弹性体,由于它的参数很多,又相互制约,所以使得它的设计很复杂。在大多数位移式仪器仪表中,要求波纹膜片产生至少和膜片厚度是同样数量级的弹性位移。这就要求使用薄壳的几何非线性理论进行分析。大多数学者研究波纹膜片的弯曲问题,是采用扁壳理论讨论具有浅波纹的膜片。而工程实际中,经常遇到深波纹膜片,这就要求从一般壳体大挠度方程进行求解。本文采用轴对称旋转壳体的简化Re-issner方程。研究了在中心集中载荷作用下具有光滑中心波纹膜片的非线性弯曲问题。应用积分方程方法,可以获得膜片的特征关系(载荷-中心挠度关系)和应力分布。文末给出实例计算的数值结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号