首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
针对汽车发动机主轴承中类似打字机的无规律异常噪声,利用自行研制的平行板挤压油膜试验机模拟发动机主轴承在动态耦合作用下的油膜噪声试验. 在试验机可以实现声音、位移、振动、拉压力和油膜空穴图像同步采集基础上,探究了不同固体粉末添加剂对油膜空穴噪声的影响,其中包括碳粉、多孔质硅铝酸盐、荧光剂(油溶性与非油溶性)和二硫化钼粉末. 结果显示碳粉、多孔质硅铝酸盐粉和非油溶性荧光剂粉有抑制油膜空穴噪声的作用,其平均降噪率分别为50%、70%和75%,这表明后两者具有更优的降噪效果. 随着加入量的增加,碳粉和多孔质硅铝酸盐粉的抑制噪声作用先增强后趋向平稳,而非油溶性荧光剂粉的抑制噪声作用先增强后减弱. 这三者抑制油膜空穴噪声的机理主要是由于其特殊的多孔结构能够增加液体中的成核粒子,形成不易聚集的小空穴,降低了与大气连通的可能性,从而减少了油膜空穴噪声出现的频率.   相似文献   

2.
Nano-sized amorphous Al2O3–2SiO2 powder was prepared by a sol–gel method coupled with azeotropic distillation. The structure of the powder was investigated by DTS, BET, TEM, FT-IR, TG-DTA and XRD, showing that n-butanol azeotropic distillation could effectively remove water from the aluminosilicate gels and prevent the formation of hard agglomerates in the drying process. The average particle diameter of the powder was about 70 nm. The largest BET specific surface area of the powder was 669 m2/g. To examine the alkali-activation reactivity of the powder, alkali-activation tests were performed with the powder reacting with sodium silicate solution. The synthetic powder was found to be highly reactive.  相似文献   

3.
In this article, different population contributions of quartz powders to chemical reactivity in pozzolanic reaction were studied. Deconvolution software was used to show the different particle populations of each product. Reaction of quartz powder with lime in the pozzolanic reaction at 20 °C shows that reactivity of each powder population depends on its particle size. Adsorbed fine particles on coarse particle surfaces have a significant role in the first term of the reaction. In a second term, the micropo...  相似文献   

4.
The preparation and behavior of powder stearin-based methyl ester sulfonates (MES) with the addition of builder as a glidant agent was studied. MES is an anionic surfactant and its performance is equivalent to petroleum-based linear alkylbenzene sulfonates (LAS), the workhorses of the detergent industry. At the same time, zeolites or soda ash were the alternative builders for non-phosphate-based detergent. The behavior of powder MES properties was measured in terms of morphology, particle size, cohesion, caking, and compaction. Before that, these palm stearin-based MES of carbon chain 16–18 with ratios of 98:2, 80:20, and 60:40 in flakes were ground using a high shear mixer by 23,000 rpm to produce powder particles. Decreasing the particle size of MES powder can reduce the powder's cohesion, caking, and compaction. The addition of zeolite or soda ash as a glidant in powdered MES can improve the caking behavior. The high stearic in MES greatly influenced getting fine particle powders and required more glidant agents. This powder MES with excellent powder characteristics can perform well as a bio-based cleaning product.  相似文献   

5.
In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu–Cu2O–CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane industry were treated with acid followed by reduction with metallic iron powder. The obtained copper powder was then subjected to controlled oxidation in air at different temperatures, followed by ball milling. The orthogonal array approach was applied to optimize this process, and the stirring speed and pH were found to significantly affect the leaching ratio and copper yield, respectively. When used for the Rochow process, the optimized ternary Cu–Cu2O–CuO catalyst greatly enhanced the dimethyldichlorosilane selectivity and Si conversion compared with Cu–Cu2O–CuO catalysts prepared without ball milling, bare Cu catalysts, and Cu–Cu2O–CuO catalysts with different compositions. This could be attributed to their small particle size and the strong synergistic effect among the multiple components in the catalyst with the optimized composition.  相似文献   

6.
The dense alumina shell on the surface of aluminum powder will hinder the combustion of aluminum powder and increase its ignition temperature. In this study, the aluminum oxide shell layer on the surface of aluminum powder was removed with hydrofluoric acid by one-pot method, and 3-Perfluorohexyl-1, 2-epoxypropane (PFHP) (F3C(CF2)5CH2C2H3O) was coated to form a uniform and controllable core-shell Al@PFHP. The core-shell Al@PFHP showed better thermal reaction and ignition performance. The exothermic enthalpy of Al@0.15 PFHP was increased by about 1.9 times, with lower ignition temperature (reduced by about 140 °C) and longer burning duration (increased by about 1.5 times) after coating with PFHP, compared with raw aluminum powder. In addition, the formation of PFHP coating shell can effectively improve the hydrophobicity and corrosion resistance of aluminum powder.  相似文献   

7.
张炜  萧伟健  袁传牛  张宁  刘焜 《力学学报》2022,54(9):2489-2500
为阐明粒径分布对铁粉压制中体系内部细观力学行为的影响, 基于离散元理论, 通过改变铁粉颗粒粒径分布建立压制模型, 结合力链提取方法, 通过对力链空间分布、力链数目、力链长度和力链方向性的分析, 探究粒径分布对力链演化的影响机理. 研究结果表明: 不同粒径分布的粉体压制时形成的力链空间分布具有差异, 粒径分布范围越小, 形成的力链分布越集中, 反之, 粒径分布范围越大, 形成的力链分布越松散且均匀; 在粉末压制时, 粒径分布对力链数目也有影响, 具体表现为随着粉体的粒径分布范围变大, 力链总数逐渐减少; 粉体的粒径分布对颗粒形成短力链的数目起着显著影响, 而对力链长度的影响较为有限; 随着粒径分布范围的增大, 力链的方向由均匀分布逐渐集中在特定角度方向, 表现出一定各向异性, 形成的交叉力链网络结构有利于提高粉体致密化程度. 本文为从粉体粒径分布影响层面拓展粉末压制细观力学理论提供基础, 亦为进一步结合粉体粒径分布及体系内力链演变过程改善粉末致密化行为提供指导.   相似文献   

8.
本文中采用激光微加工法在TC4钛合金表面制备了不同形貌与分布密度的微观织构,将表面织构、热氧化膜与PTFE润滑薄膜相复合制备了自润滑复合耐磨结构,同时考察了滑动条件下织构形貌及织构密度对这一复合结构摩擦磨损性能的影响. 结果表明:与未织构面的润滑薄膜相比,织构面薄膜的结合力明显增大,表面织构与润滑薄膜的结合显著增强了材料的减摩抗磨性能. 在最优的织构密度下,含有薄膜的织构化钛合金表面的磨损率可降低至1.5×10?6 mm3/(N·m),较未织构面润滑薄膜的磨损率降低了99.3%. 而将经热氧化的织构表面与润滑薄膜的结合则进一步提升了材料的耐磨性,热氧化织构面润滑薄膜的磨损率最低可达8.0×10?7 mm3/(N·m),与未热氧化的织构面润滑薄膜相比,磨损率降低了46.1%. 在相同的织构间距条件下,线型热氧化织构面显示出低而稳定的摩擦系数与极低的磨损量,这主要得益于高密度微织构对润滑介质的有效补充以及高硬度热氧化膜的耐磨性起到了协同减摩抗磨的作用.   相似文献   

9.
为解决燃料空气炸药中的燃料在中心分散装药爆炸驱动抛撒过程中易发生的窜火问题,结合中心分散装药结构设计,引入以超细干粉灭火剂为主体的阻燃介质,采用高速录像和红外热成像仪研究了中心分散药外部填充阻燃介质的情况下,对中心分散药爆炸火球产生的高温及火焰的抑制情况。试验结果表明,中心分散药爆炸火球的最高温度为1 355.4 ℃,温度超过150 ℃的持续时间为264.8 ms。外部填充阻燃介质后,中心分散药爆炸产生的火焰基本消失,火球最高温度下降90%以上,火球表面温度分布不超过100 ℃。同时进行了验证试验,采用填充阻燃介质的中心分散药抛撒1 kg的乙醚和铝粉的混合燃料,分散药与燃料的质量比超过4%时,云雾仍未发生窜火。表明填充阻燃介质可以有效防止燃料在爆炸抛撒过程中发生窜火的问题。  相似文献   

10.
针对高超声速飞行器飞行时气动加热严重的问题,为了保证高升阻比外形,提出疏导式热防护结构,建立了一套内置高导C/C材料的疏导式热防护结构原理模型,通过数值模拟和电弧风洞的方法对疏导式热防护结构进行了分析,得到内置高导C/C材料的防热效果.数值模拟结果表明来流马赫数为8时,模型驻点温度下降了500度,柱面最低升高了380度,实现了热流从高温区到低温区的疏导,减弱了端头的热载荷,强化了端头的热防护能力.通过电弧风洞试验可以获得相似的结果,内置普通C/C材料表层抗氧化层出现严重烧蚀,而内置高导C/C材料基本不变,验证了数值模拟方法的准确性以及内置高导C/C材料疏导式热防护结构的有效性.  相似文献   

11.
Fully resolved numerical simulations of a micron-sized spherical particle residing on a surface with large-scale roughness are performed by using the Lattice–Boltzmann method. The aim is to investigate the influence of surface roughness on the detachment of fine drug particles from larger carrier particles for transporting fine drug particles in a DPI (dry powder inhaler). Often the carrier surface is modified by mechanical treatments for modifying the surface roughness in order to reduce the adhesion force of drug particles. Therefore, drug particle removal from the carrier surface is equivalent to the detachment of a sphere from a rough plane surface. Here a sphere with a diameter of 5 μm at a particle Reynolds number of 1.0, 3.5 and 10 are considered. The surface roughness is described as regularly spaced semi-cylindrical asperities (with the axes oriented normal to the flow direction) on a smooth surface. The influence of asperity distance and size ratio (i.e. the radius of the semi-cylinder to the particle radius, Rc/Rd) on particle adhesion and detachment are studied. The asperity distance is varied in the range 1.2 < L/Rd < 2 and the semi-cylinder radius between 0.5 < Rc/Rd < 0.75. The required particle resolution and domain size are appropriately selected based on numerical studies, and a parametric analysis is performed to investigate the relationship between the contact distance (i.e. half the distance between the particle contact points on two neighbouring semi-cylinders), the asperity distance, the size ratio, and the height of the particle centroid from the plane wall. The drag, lift and torque acting on the spherical particle are measured for different particle Reynolds numbers, asperity distances and sizes or diameters. The detachment of particles from rough surfaces can occur through lift-off, sliding and rolling, and the corresponding detachment models are constructed for the case of rough surfaces. These studies will be the basis for developing Lagrangian detachment models that eventually should allow the optimisation of dry powder inhaler performance through computational fluid dynamics.  相似文献   

12.
针对乳化液润滑冷轧铝板表面出现的黑色条纹状缺陷及腐蚀斑缺陷进行了研究,分别使用表面形貌仪、扫描电子显微镜对铝板的表面形貌和表面微观结构进行了观测。使用能量色散光谱和X射线光电子能谱对铝板表面的化学成分进行了分析,并探讨了表面缺陷产生的机理。结果表明:表面发黑缺陷是由于润滑失效导致表面出现微裂纹造成的,而腐蚀缺陷是由于局部残留水的作用在铝板表面发生电化学反应从而形成较厚的氧化层。  相似文献   

13.
The dependence of the critical diameter (d*) of nitromethane (NM) on the content of aluminum, aluminum oxide, tungsten powders, carbon black, and talc and the dependence of the d* of tetranitromethane (TNM) on aluminum and aluminum oxide content have been experimentally investigated. The powder content was varied over'a wide range (0–75% by weight), as was the particle size. It was found that for NM mixtures the variation of d* is quite different from that for TNM. For powder particle sizes of 1–50 the d* of the NM mixtures decreases with increase in powder concentration. The minimum value of d* is ten times less than the value for pure NM. In TNM mixtures d* increases monotonically with the amount of powder. It is assumed that this behavior of the NM mixtures is associated with the inhomogeneous structure of the detonation front in NM, a consequence of the particular reaction kinetics characteristic of nitromethane.  相似文献   

14.
Sintering models are discussed and used to analyze flow instabilities that may arise during preliminary compaction of powders. These instabilities can be at the origin of heterogeneities in the densification. The material is modeled as a viscoplastic thermal sensitive porous material. The modeling includes the limit case of a linear viscous material. The effects of sintering conditions (temperature and pressure in the case of pressure sintering) and the effects of material characteristics such as porosity, heat capacity, theoretical density, surface tension, particle size and creep parameters on stability of sintering are investigated. The heat release associated with the plastic flow is shown to sometimes have an important role. Stability criteria are derived and applied to the analysis of sintering and hot isostatic pressing, using various sintering models. These stability criteria can be used to optimize the densification process; one can control, for example, temperature so as to avoid any instability. Stability maps enabling an optimization of temperature–pressure regime in hot isostatic pressing are built for sample metal (nickel) powder.  相似文献   

15.
N. W. Page 《Shock Waves》1994,4(2):73-80
A physically based model for the shock Hugoniot of a powdered material is described which allows separate identification of the cold and thermal contributions to pressure and specific internal energy. Special features of this model are provision for the effects of porosity on the stress state and an empirically determined cold loading contribution to pressure. The model was tested against published Hugoniot data for iron and gave excellent agreement for shock pressures ranging from low to high values.This shock Hugoniot was used to explore the shocked state of 4 samples of iron powder derived from commercially available material. The purpose of this study was to investigate the effect of powder particle characteristics and initial starting densities on the shocked state.The powder samples investigated had a range of morphologies and sizes. Powders with either a large shape factor or high internal friction, as determined in shear cell experiments, exhibited a higher stiffness in the cold loading curve. In the shocked state, this translated into a higher cold component of pressure and energy than found in the other powders.The effect of initial powder density was studied by applying the Hugoniot model to two impact initiated shock loadings, one for a stainless steel flyer impacting at 0.5 km/s and one at the higher velocity of 2.0 km/s. Both were applied to iron powder targets preloaded to a range of initial densities. For a given impact event, the proportion of shock energy in the thermal mode was found to decrease with increasing initial density. This decrease was more pronounced at higher shock strengths. As a result of the decreasing component of thermal energy with higher initial density, there was a reduction in the continuum temperature behind the shock. However, the corresponding increase in the component of cold energy with the falling relative contribution from the thermal energy lead to increasing density behind the shock suggesting that there is a trade off in terms of temperature and density achievable with a given impact event.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

16.
In this paper a model was developed to describe the shear flow resistance force and torque acting on a fine particle as it slides on the slip surface of a rising gas bubble. The shear flow close to the bubble surface was predicted using a Taylor series and the numerical data obtained from the Navier–Stokes equations as a function of the polar coordinates at the bubble surface, the bubble Reynolds number, and the gas hold-up. The particle size was considered to be sufficiently small relative to the bubble size that the bubble surface could be locally approximated to a planar interface. The Stokes equation for the disturbance shear flows was solved for the velocity components and pressure using series of bispherical coordinates and the boundary conditions at the no-slip particle surface and the slip bubble surface. The solutions for the disturbance flows were then used to calculate the flow resistance force and torque on the particle as a function of the separation distance between the bubble and particle surfaces. The resistance functions were determined by dividing the actual force and torque by the corresponding (Stokes) force and torque in the bulk phase. Finally, numerical and simplified analytical rational approximate solutions for force correction factors for sliding particles as a function of the (whole range of the) separation distance are presented, which are in good agreement with the exact numerical result and can be readily applied to more general modelling of the bubble–particle interactions.  相似文献   

17.
The two-equation model in porous media can describe the local thermal non-equilibrium (LTNE) effects between fluid and solid at REV scale, with the temperature differences in a solid particle neglected. A multi-scale model has been proposed in this study. In the model, the temperature differences in a solid particle are considered by the coupling of the fluid energy equation at REV scale with the heat conduction equation of a solid particle at pore scale. The experiments were conducted to verify the model and numerical strategy. The multi-scale model is more suitable than the two-equation model to predict the LTNE effects in porous media with small thermal conductivity. The effects of particle diameter, mass flow rate, and solid material on the LTNE effects have been investigated numerically when cryogenic nitrogen flows through the porous bed with small thermal conductivity. The results indicate that the temperature difference between solid center and fluid has the same trend at different particle diameters and mass flow rates, while the time to reach the local thermal equilibrium is affected by solid diameter dramatically. The results also show that the temperature difference between solid center and surface is much greater than that between solid surface and fluid. The values of \( \rho {\text{c}} \) for different materials have important influence on the time to reach the local thermal equilibrium between solid and fluid.  相似文献   

18.
The roller-spreading and blade-spreading are main powder spreading methods in powder-bed additive manufacturing. The discrete element method was introduced to simulate nylon powder spreading by both roller and blade spreaders. The two spreading processes were compared from several aspects including particle flow behavior, particle contact forces, forces exerted on spreaders, particle segregation and powder layer density. It is found that powder spreading methods mainly affect the movement trajectory of particles, particle contact forces and forces exerted on spreaders. Complicated dispersion and circulation movement of particles occur inside the powder pile by roller-spreading, while particles have relatively weak dispersion by the blade-spreading. The normal force applied to the roller introduces a compacting effect on the powder pile and creates strong force chains that distribute uniformly in the powder pile. Therefore, the powder bed with higher density can be obtained by roller-spreading in thicker powder layer due to the compacting effect. The blade spreader sustains tangential force mainly, so the blade-spreading process limits its application to thicker powder layer. As the powder layer thickness increases, the roller-spreading is more sensitive to segregation index than that of the blade-spreading. The comprehensive comparison of two spreading processes provides criteria for selecting spreading methods.  相似文献   

19.
胡栋  王永国 《爆炸与冲击》1998,18(2):145-149
利用OMA谱仪及三台单色谱仪研究了爆炸激波管中铝粉在氢氧爆轰激励下快速反应的发射谱及辐射特性。研究发现:铝粉氧化反应主要机理是铝粉和氧反应;铝粉和水的反应是次要的。铝粉颗粒变细可以明显增强AlO辐射强度,加快铝反应速率。利用我们研制的分光技术测量AlO的三条振动谱线强度,确定了AlO激发温度。测量表明:随着铝粉颗粒变细,AlO激发温度明显提高。利用连续辐射谱确定的辐射温度同样说明添加铝粉可以提高反应温度。  相似文献   

20.
为探索惰化剂粒径对可燃工业粉尘火焰传播特性的影响,通过建立竖直粉尘燃烧管道实验平台,在碳酸氢钠质量分数为30%的惰化条件下,就碳酸氢钠粒径对铝粉燃烧火焰传播特性的影响进行了实验研究。结果表明:平均粒径为30 μm的碳酸氢钠粉体对平均粒径为15 μm的铝粉的火焰传播速度具有较好的抑制作用,惰性粉体与可燃工业粉尘应存在粒度匹配效应;碳酸氢钠粉体对铝粉火焰温度的惰化抑制效果与其粒径呈反比关系;碳酸氢钠粉体会减小铝粉火焰预热区厚度,预热区厚度随碳酸氢钠粒径的增加先减小后增大。此外,分析了碳酸氢钠粒径对铝粉火焰传播特性影响的作用机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号