首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling and Simulation of Local Thermal Non-equilibrium Effects in Porous Media with Small Thermal Conductivity
Authors:Lang Lu  Xueping Du  Chengyun Xin
Institution:1.School of Electrical and Power Engineering,China University of Mining and Technology,Xuzhou,China
Abstract:The two-equation model in porous media can describe the local thermal non-equilibrium (LTNE) effects between fluid and solid at REV scale, with the temperature differences in a solid particle neglected. A multi-scale model has been proposed in this study. In the model, the temperature differences in a solid particle are considered by the coupling of the fluid energy equation at REV scale with the heat conduction equation of a solid particle at pore scale. The experiments were conducted to verify the model and numerical strategy. The multi-scale model is more suitable than the two-equation model to predict the LTNE effects in porous media with small thermal conductivity. The effects of particle diameter, mass flow rate, and solid material on the LTNE effects have been investigated numerically when cryogenic nitrogen flows through the porous bed with small thermal conductivity. The results indicate that the temperature difference between solid center and fluid has the same trend at different particle diameters and mass flow rates, while the time to reach the local thermal equilibrium is affected by solid diameter dramatically. The results also show that the temperature difference between solid center and surface is much greater than that between solid surface and fluid. The values of \( \rho {\text{c}} \) for different materials have important influence on the time to reach the local thermal equilibrium between solid and fluid.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号