首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work the transient energy transfer in a nonsaturated porous medium is studied, using a mixture theory viewpoint. The porous matrix is assumed homogeneous, rigid and isotropic, while the fluid is a Newtonian incompressible one and both are assumed static. Since the homogeneous matrix is not saturated, gradients of concentration are present. The porous medium and the fluid (a liquid) will be regarded as continuous constituents of a mixture that will have also a third constituent, an inert gas, assumed with zero mass density and thermal conductivity. The problem is described by a set of two partial differential equations which represent the energy balances for the fluid and the solid constituents. Isovalues for these two constituents are plotted, considering representative time instants and selected values for the energy equations coefficients and for the saturation.  相似文献   

2.
In this paper, we carry out an analysis of the structural properties of the solutions to the speed gradient (SG) traffic flow model. Under the condition that the relaxation effect can be neglected, it is shown that a 1-shock or a 1-rarefaction is associated with the first characteristic, but on the other hand, a contact discontinuity rather than a 2-shock or a 2-rarefaction is associated with the second characteristic. Since the existence of a 2-shock or 2-rarefaction violates the physical mechanism of the traffic flow, the SG model is more reasonable. If the relaxation effect cannot be neglected, it is somewhat difficult to carry out the analytical analysis and the numerical simulation results should be obtained. The project supported by the National Natural Science Foundation of China (10272101)  相似文献   

3.
非饱和正冻土的三场耦合理论框架   总被引:11,自引:2,他引:9  
陈飞熊  李宁  徐彬 《力学学报》2005,37(2):204-214
在``饱和正冻土的理论构架'的基础上,假定了冻土体内的空气的流动是一 种Darcy流,进一步考虑了非饱和土中气相的影响,提议了一种综合考虑两种极端 情况:(1) 气体与外界完全相通. (2) 气体与外界完全不相通的相关水、热、力相 耦合的多孔多相介质理论构架------半连通、半封闭非饱和正冻土理论构架. 重点讨论了较简单的气体半连通半封闭的非饱和孔隙冻土体的三场耦合模型. 为 检验三场耦合分析模型及所开发的针对冻土工程三场耦合模型的软件系统3G2001 的合理性与正确性, 与214国道花石峡 试验路基实测的地温变化和路基路面变形 进行了对比验证, 对比结果显示: 路基中分析所得的温度场与实测值变化规律一 致, 量化相差大都在10\%$\sim$20\%以内; 分析所得耦合变形随时间的变化也与 实测值完全一致, 路中的分析变形与实测相差也在10%-20%以内  相似文献   

4.
The mixture theory is employed to the analysis of surface-wave propagation in a porous medium saturated by two compressible and viscous fluids (liquid and gas). A linear isothermal dynamic model is implemented which takes into account the interaction between the pore fluids and the solid phase of the porous material through viscous dissipation. In such unsaturated cases, the dispersion equations of Rayleigh and Love waves are derived respectively. Two situations for the Love waves are discussed in detail: (a) an elastic layer lying over an unsaturated porous half-space and (b) an unsaturated porous layer lying over an elastic half-space. The wave analysis indicates that, to the three compressional waves discovered in the unsaturated porous medium, there also correspond three Rayleigh wave modes (R1, R2, and R3 waves) propagating along its free surface. The numerical results demonstrate a significant dependence of wave velocities and attenuation coefficients of the Rayleigh and Love waves on the saturation degree, excitation frequency and intrinsic permeability. The cut-off frequency of the high order mode of Love waves is also found to be dependent on the saturation degree.  相似文献   

5.
The main focus of this work is to model macroscopically the effects of partial saturation upon the permeability of dual scale fibrous media made of fiber bundles when a Newtonian viscous fluid impregnates it. A new phenomenological model is proposed to explain the discrepancies between experimental pressure results and analytical predictions based on Darcy's law. This model incorporates the essential features of relative permeability but without the necessity of measuring saturation of the liquid for its prediction. The model is very relevant for the small scale industrial systems where a liquid is forced to flow through a fibrous porous medium. It requires four parameters. Two of them are the two permeability values based on the two length scales. One length scale is of the order of magnitude of the individual fiber radius and corresponds to the permeability of the completely staurated medium, the other is of the order of magnitude of the distance between the fiber bundles and corresponds to the permeability of the partially saturated medium. The other two parameters are the lengths of the two partially saturated regions of the flow domain. The two lengths of the partially saturated region and the permeability of the fully saturated flow domain can be directly measured from the experiments. The excellent agreement between the model and the experimental results of inlet pressure profile with respect to time suggests that this model may be used to describe the variation of the permeability behind a moving front in such porous media for correct pressure prediction. It may also be used to characterize the fibrous medium by determining the two different permeabilities and the relative importance of the unsaturated portion of the flow domain for a given architecture.  相似文献   

6.
一维流体饱和粘弹性多孔介质层的动力响应   总被引:3,自引:1,他引:2  
杨骁  张燕 《力学季刊》2005,26(1):44-52
本文研究了不可压流体饱和粘弹性多孔介质层的一维动力响应问题。基于粘弹性理论和多孔介质理论,在流相和固相微观不可压、固相骨架服从粘弹性积分型本构关系和小变形的假定下,建立了不可压流体饱和粘弹性多孔介质层一维动力响应的数学模型,利用Laplace变换,求得了原初边值问题在变换空间中的解析解,并利用Laplace逆变换的Crump数值反演方法,得到原动力响应问题的数值解。数值研究了饱和标准线性粘弹性多孔介质层的动力响应,分析了固相位移、渗流速度、孔隙压力及固相有效应力等的响应特征。结果表明,与不可压流体饱和弹性多孔介质相同,不可压流体饱和粘弹性多孔介质中亦只存在一个纵波,并且固相骨架的粘性对动力行为有显著的影响。  相似文献   

7.
We investigate a two-dimensional lattice gas automaton (LGA) for simulating the nonlinear diffusion equation in a random heterogeneous structure. The utilility of the LGA for computation of nonlinear diffusion arises from the fact that, the diffusion coefficient in the LGA depends on the local density of fluid particles which statistically determines the collision rate and thus, the mean free path of the particles at the microscopic scale. The LGA may therefore be used as a physical analogue to simulate moisture flow in unsaturated porous media. The capability of the LGA to account for unsaturated flow is tested through a set of numerical experiments simulating one-dimensional infiltration in a simplified semi-infinite homogenous isotropic porous material. Different mechanisms of interactions are used between the fluid and the solid phase to simulate various fluid–solid interfaces. The heterogeneous medium, initially at low density is submitted to a steep density gradient by continuously injecting fluid particles at high concentration and zero velocity along one face of the model. The propagation of the infiltration front is visualized at different time steps through concentration profiles parallel to the applied concentration gradient and the infiltration rate is measured continuously until steady-state flow is reached. The numerical results show close agreement with the classical theory of flow in unsaturated porous media. The cumulative absorption exhibits the expected t 1/2 dependence. The evolution of the effective diffusion coefficient with the particle concentration is estimated from the measured density profiles for the various porous materials. Depending on the applied fluid–solid interactions, the macroscopic effective diffusivity may vary by more than two orders of magnitude with density.  相似文献   

8.
The analysis of two-phase flow in porous media begins with the Stokes equations and an appropriate set of boundary conditions. Local volume averaging can then be used to produce the well known extension of Darcy's law for two-phase flow. In addition, a method of closure exists that can be used to predict the individual permeability tensors for each phase. For a heterogeneous porous medium, the local volume average closure problem becomes exceedingly complex and an alternate theoretical resolution of the problem is necessary. This is provided by the method of large-scale averaging which is used to average the Darcy-scale equations over a region that is large compared to the length scale of the heterogeneities. In this paper we present the derivation of the large-scale averaged continuity and momentum equations, and we develop a method of closure that can be used to predict the large-scale permeability tensors and the large-scale capillary pressure. The closure problem is limited by the principle of local mechanical equilibrium. This means that the local fluid distribution is determined by capillary pressure-saturation relations and is not constrained by the solution of an evolutionary transport equation. Special attention is given to the fact that both fluids can be trapped in regions where the saturation is equal to the irreducible saturation, in addition to being trapped in regions where the saturation is greater than the irreducible saturation. Theoretical results are given for stratified porous media and a two-dimensional model for a heterogeneous porous medium.  相似文献   

9.
针对非饱和地基土中埋置隧道的三维动力响应计算问题, 提出了波函数法.采用无限长的Flügge薄壁圆柱壳模拟圆形隧道衬砌,采用流、固、气组成的三相介质模拟非饱和地基土体.分别采用分离变量法以及Helmholtz矢量分解定理求解薄壁圆柱壳的振动控制方程与非饱和土的波动方程.根据隧-土交界面与地表面处的应力、位移以及孔隙流体压力等边界条件,利用平面波与柱面波的转换性质,实现了隧道内作用单位简谐载荷时隧道衬砌与土体系统动力响应的耦合求解.通过与既有单相弹性介质2.5维有限元-边界元法、两相饱和多孔介质2.5维有限元-边界元法以及三相非饱和介质Pip in Pip半解析法的计算结果进行对比, 验证了本文计算方法的可靠性. 最后,基于该方法, 通过算例分析了不同饱和度下非饱和土-隧道系统的动力响应特征.结果表明, 饱和度对土体动位移与超孔隙水压力的幅值响应有较大影响.该方法的非饱和地基土参数退化后,也可用来计算和分析饱和地基土或单相弹性地基土与隧道系统的动力响应.   相似文献   

10.
固体、流体多相孔隙介质中的波动理论及其数值模拟的进展   总被引:18,自引:1,他引:18  
简要回顾了两相或三相多孔介质中波动理论和数值模拟的研究历史和现状,着重介绍了用有限元方法对饱水土层中波动进行数值模拟的研究进展,并讨论了有待进一步研究的问题.  相似文献   

11.
Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173–179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid–solid and liquid to air–liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media.  相似文献   

12.
The steady-state convection of a fluid in a thin porous vertical ring located in a heat-conducting half-plane is considered. For this problem approximate equations are derived. For a circular ring an analytic solution is obtained. For an elliptic ring a numerical-analytic solution is found. The Nusselt number and the fluid flow rate as functions of the Rayleigh number, the aspect ratio, and the contour depth are investigated.Many studies have been devoted to fluid convection in a porous ring [1–3]. In [1] two-dimensional convection with an isothermal internal boundary was considered when a temperature stratification is given on the outer boundary. A feature of this problem is the fact that the ring is located inside an impermeable heat-conducting medium in which a thermal gradient directed vertically downward is specified at a large distance from the ring. In [2, 3] two-dimensional convection in an annular ring occupied by a porous medium was investigated. From the results obtained in these studies it follows that in the formulation considered the hydraulic approximation can be used with satisfactory accuracy. In the present study this question is discussed more concretely and the necessary estimates are found. The results obtained could be useful for investigating hydrothermal convection in the Earth's crust, which has important geophysical applications [4–6].  相似文献   

13.
Buckley and Leverett [1] formulated the problem of the displacement of immiscible liquids in a porous medium and obtained a very simple one-dimensional solution for a two-phase flow. Different generalizations of it are known [2]. In [3, 4], a method of characteristics is proposed for numerical solution of the problem of three-phase flow. Articles [5, 6] consider the problem of the injection (at a given pressure) of two incompressible liquids into a porous stratum previously saturated with a third, elastic liquid. The authors started from the assumption of the existence, for this problem, of zones of three-, two-, and single-phase flow, separated by unknown mobility gradients. The present work investigates the solution for a three-phase flow, analogous to the Buckley-Leverett solution for two phases. It is shown that the character of the degrees of saturation depends essentially on the initial saturation of the porous stratum and on the phase composition of the mixture being injected.Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 39–44, January–February, 1972.  相似文献   

14.
Flow of a fluid through a porous medium is considered with allowance for heat conduction. Both fronts at which the liquid is transformed into steam or a liquid-steam mixture and fronts with inverse transformations are studied. The evolutionarity conditions of these fronts are considered and a model of their structure is proposed.  相似文献   

15.
Buès  M.  Panfilov  M. 《Transport in Porous Media》2004,55(2):215-241
A solute transport through a porous medium is examined provided that the fluid leaving the porous sample returns back in a continuous way. The porous medium is thus included into a closed hydrodynamic circuit. This cycling process is suggested as an experimental tool to determine porous medium parameters describing transport. In the present paper the mathematical theory of this method is developed. For the advective type of transport with solute retention and degradation in porous medium, the system of transport equations in a closed circuit is transformed to a delay differential equation. The exact analytical solution to this equation is obtained. The solute concentration manifests both the oscillatory and monotonous behaviors depending on system parameters. The number of oscillation splashes is shown to be always finite. The maximum/minimum points are determined as solutions of a polynomial equation whose degree depends on the unknown solution itself. The cyclic methods to determine porous medium parameters as porosity and retention rate are developed.  相似文献   

16.
The problem of the propagation of longitudinal Biot waves in a porous medium saturated with a weakly compressible liquid (water) or a gas is considered theoretically. The frequency dependence of the phase velocities and damping coefficients is investigated numerically. It is shown that for a certain relationship between the parameters of the porous medium and the saturating fluid there is a “critical” frequency at which the properties of longitudinal waves of both kinds are identical. An analytical expression for this “critical” frequency is obtained. It is shown that for a gas-saturated porous medium, at a certain frequency, in both longitudinal waves the relative gas-matrix motion changes type. Assuming that the saturating-gas behavior corresponds to an adiabatic equation of state, an estimate is obtained for the threshold pore pressure necessary for the restructuring of the relative motion. The wave associated with matrix deformation is shown to have a high damping coefficient in a porous medium saturated with a weakly compressible liquid (water in the case considered) but to be only weakly damped in a gas-saturated porous medium.  相似文献   

17.
The problem of hydraulic fracture crack propagation in a porous medium is considered. The fracture is driven by an incompressible viscous fluid with a power-law rheology of the pseudoplastic type. The fluid seepage is described by an equation generalizing the Darcy law in the hydraulic approximation. It is shown that the system of governing equations has a power-law self-similar solution, whereas, in the limiting cases of low and high fluid saturation in the porous medium, there are some families of power-law or exponential self-similar solutions. The complete self-similar solution is constructed. The effect of the nonlinear rheology of the fracturing fluid on the behavior of the solution is studied. The problem is solved analytically for an arbitrary boundary condition at the crack inlet when the viscous stresses in the non-Newtonian fluid are close to a constant.  相似文献   

18.
The effect of yield stress on the flow characteristics of a Casson fluid in a homogeneous porous medium bounded by a circular tube is investigated by employing the Brinkman model to account for the Darcy resistance offered by the porous medium. The non-linear coupled implicit system of differential equations governing the flow is first transformed into suitable integral equations and are solved numerically. Analytical solution is obtained for a Newtonian fluid in the case of constant permeability, and the numerical solution is verified with that of the analytic solution. The effect of yield stress of the fluid and permeability of the porous medium on shear stress and velocity distributions, plug flow radius and flow rate are examined. The minimum pressure gradient required to start the flow is found to be independent of the permeability of the porous medium and is equal to the yield stress of the fluid.  相似文献   

19.
A three-spatial scale, single time-scale model for both moisture and heat transport is developed for an unsaturated swelling porous media from first principles within a mixture theoretic framework. On the smallest (micro) scale, the system consists of macromolecules (clay particles, polymers, etc.) and a solvating liquid (vicinal fluid), each of which are viewed as individual phases or nonoverlapping continua occupying distinct regions of space and satisfying the classical field equations. These equations are homogenized forming overlaying continua on the intermediate (meso) scale via hybrid mixture theory (HMT). On the mesoscale the homogenized swelling particles consisting of the homogenized vicinal fluid and colloid are then mixed with two bulk phase fluids: the bulk solvent and its vapor. At this scale, there exists three nonoverlapping continua occupying distinct regions of space. On the largest (macro) scale the saturated homogenized particles, bulk liquid and vapor solvent, are again homogenized forming four overlaying continua: doubly homogenized vicinal fluid, doubly homogenized macromolecules, and singly homogenized bulk liquid and vapor phases. Two constitutive theories are developed, one at the mesoscale and the other at the macroscale. Both are developed via the Coleman and Noll method of exploiting the entropy inequality coupled with linearization about equilibrium. The macroscale constitutive theory does not rely upon the mesoscale theory as is common in other upscaling methods. The energy equation on either the mesoscale or macroscale generalizes de Vries classical theory of heat and moisture transport. The momentum balance allows for flow of fluid via volume fraction gradients, pressure gradients, external force fields, and temperature gradients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号