首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为提高MEMS陀螺的精度,提出了一种基于最优定界椭球(OBE)的平滑算法,并将其用于陀螺阵列信号的处理。首先,利用多个相同型号的MEMS陀螺构成阵列,测量同一角速率信号,并建立数据融合模型。对于融合问题而言,噪声统计特性的不确定会导致传统融合方法精度下降。为解决该问题,引入仅要求噪声未知但有界的集员估计理论,结合RTS平滑思想,提出一种新的平滑算法作为融合方法,它由前向滤波和反向平滑两个过程构成:前者采用集员估计理论中的OBE滤波估计角速率,后者则逆序执行OBE算法进一步提高估计精度。实验表明:该方法能够将陀螺的静态漂移由0.5130(°)/s降低到0.1368(°)/s;动态条件下,在有效跟踪载体角度变化的同时,将漂移由0.5343(°)/s降低到0.1704(°)/s,显著提高了陀螺的使用精度。  相似文献   

2.
针对中低精度自主导航要求,基于MEMS惯组中的加速度计与磁力计,提出一种基于非机动窗口捕捉的陀螺漂移在线补偿方法。通过加速度计输出值判定飞行状态,捕捉非机动窗口。利用地磁矢量以及重力矢量估计陀螺漂移并修正姿态误差。在陀螺漂移6°/h,磁力计精度100 nT的仿真条件下,能有效估计出陀螺漂移,姿态精度优于3′。在80 mg加速度计噪声干扰下定姿精度优于8′,同等条件下比现有互补滤波算法精度提高50%。基于转台开展了MEMS惯组ADIS16488的物理试验,结果表明,所提出算法能有效修正姿态误差,比现有的互补滤波算法更具有抗机动性。所提出方法完全自主,精度较高,可显著提升中低精度惯组中陀螺的性能,具有工程应用价值。  相似文献   

3.
基于状态约束的MIMU/磁强计组合姿态估计滤波算法   总被引:1,自引:0,他引:1  
构建了基于MEMS技术的陀螺、加速度计、磁强计及空速计组合的微小型飞行器姿态测量系统.研究了基于四元数的扩展卡尔曼滤波算法.取姿态误差四元数和陀螺随机漂移构建状态向量,通过误差四元数微分方程和陀螺随机误差模型建立卡尔曼滤波状态方程,采用速度信息实时补偿加速度计输出值得到重力矢量,利用重力矢量估计水平姿态,通过滤波补偿姿态误差,降低了对陀螺的精度要求.将状态向量之间的约束方程作为伪量测方程引入到量测模型中,解决了由于状态向量相互约束导致的滤波发散和奇异.动态飞行滤波噪声的自适应调整增强了系统性能.仿真和实验表明,该滤波算法能够有效避免系统的漂移,提高系统测量精度和稳定性.  相似文献   

4.
单轴旋转SINS的方位陀螺漂移对长航时导航精度至关重要,方位陀螺漂移的估计是单轴旋转SINS的关键技术之一。通过对单轴旋转SINS方位陀螺漂移估计的主要影响因素进行分析,提出将水平阻尼网络引入到导航流程中,建立带水平阻尼网络的误差模型,利用位置匹配Kalman滤波对方位陀螺漂移进行估计,并设计了一种合理的估计流程,能够全面估计出惯性器件零偏,保证了方位陀螺漂移的估计精度。数学仿真和海上试验结果表明,对陀螺角度随机游走系数约为0.001(°)/h~(1/2)的SINS,经过6 h的估计流程后方位陀螺漂移估计精度优于0.001(°)/h,估计完成后转入纯惯性导航定位精度优于1.5 n mile/24 h(max),验证了该方法的可行性。  相似文献   

5.
基于自适应UKF算法的MEMS陀螺空中在线标定技术   总被引:2,自引:0,他引:2  
为保证微型卫星定位应用中系统精度与稳定性,需要对姿态传感器进行实时在线标定.在无外界姿态参考时,提出一种用三轴磁强计测量值来实时估计MEMs陀螺的零漂误差的方法,采用UKF滤波算法,将陀螺漂移作为滤波状态向量,通过建立三轴磁强计测量微分方程,作为系统量测方程实现陀螺漂移的最优估计.针对磁强计测量信息易受干扰导致滤波量测模型不准确的问题,将自适应因子引入到UKF中,通过在线监控和调整测量误差,减少陀螺标定的估计误差,增强系统性能.实验结果表明,经过标定,MEMS陀螺精度提高约30%,并且在磁强计有外界干扰时,陀螺的标定结果收敛.将标定后的MEMS陀螺进行姿态解算,其动态误差小于2°.  相似文献   

6.
旋转-静止混合对准方案在旋转火箭弹中的应用   总被引:1,自引:0,他引:1  
由于成本考虑,旋转火箭弹捷联惯导系统中使用中低精度陀螺,利用传统的初始对准方法,对准精度难以满足要求。针对旋转火箭弹的特点,提出了一种旋转调制的非线性对准方法,利用该方法,Y轴和Z轴陀螺的随机漂移得到调制,从而提高了对准精度。针对单纯旋转调制对准无法精确估计陀螺漂移的缺点,提出了一种旋转—静态混合对准方案,利用旋转调制的对准结果,在静止段对陀螺漂移进行精确估计。仿真结果表明,由两个精度为0.2(°)/h和一个精度为0.01(°)/h的陀螺组成的捷联惯导系统,在230 s内对准误差小于0.05°,同时可准确估计出三个陀螺的漂移。该方案具有一定的工程实用价值。  相似文献   

7.
改进小波阈值法在MEMS陀螺信号去噪中的应用   总被引:2,自引:0,他引:2  
陀螺随机漂移是影响MEMS陀螺仪精度的重要指标,有效减小MEMS陀螺仪的随机漂移误差是提高MEMS陀螺仪使用精度的关键技术之一.文中在分析了小波阈值法的去噪原理和存在的缺陷的基础上,构造了一种新的阈值函数,并利用3σ准则提取阈值,提出了一种改进的,小波阈值去噪法,并将其应用于MEMS陀螺仪输出信号的滤波处理中,取得了良好的去噪效果.实验结果表明,文中提出的方法可以有效减少信号中的高频噪声,很好地抑制MEMS陀螺仪的随机漂移,去噪效果明显优于传统的,小波阈值法.  相似文献   

8.
滤波技术在MIMU温度漂移补偿中的应用   总被引:1,自引:0,他引:1  
为了提高MIMU的零偏稳定性,研究了MIMU的温度特性.通过温度实验,建立了微机械陀螺及加速度计漂移的温度补偿模型.陀螺零偏稳定性由补偿前的126.324(°)/h改善到9.612(°)/h,加速度计偏值稳定性由补偿前的0.8 36 mg改善到0.216 mg.分析了温度测量噪声的影响,对补偿模型进行了改进.将温度的测量值经过KaIman滤波之后用于补偿,可以进一步提高性能:陀螺零偏稳定性由9.612( °)/h改善到8.964( °)/h,改善了6.7%;加速度计偏值稳定性由0.216 mg改善到0.176 mg,改善了18%.实验结果表明,将温度测量值进行适当的滤波处理后用于补偿模型,补偿效果比不经过处理进行补偿的结果更优.利用Kalman滤波技术降低温度测量值的噪声,最终降低补偿结果的噪声也是文中的一个创新点.  相似文献   

9.
光纤陀螺随机漂移建模与分析   总被引:1,自引:0,他引:1  
光纤陀螺精度是惯导系统精度高低与否的关键因素,而减小陀螺随机漂移是提高其精度的重要手段.对陀螺输出数据中的随机漂移建立模型,在此基础上对陀螺数据进行滤波,可以有效提高光纤陀螺的输出精度,从而提高惯导系统的精度.本文通过大量实验建立了光纤陀螺随机漂移的ARMA模型,通过有效滤波对随机漂移进行滤除,并且对滤波结果进行Allan方差分析.分析结果表明,光纤陀螺输出信号中存在的主要误差源以及正弦噪声较滤波前明显减小到50%,有效地抑制了高频噪声,验证了光纤陀螺随机漂移建立模型的正确性.本文还设计了可视化软件,具有较高的工程意义.  相似文献   

10.
以单轴恒速偏频激光陀螺系统为研究对象,在分析IMU传感器误差的基础上,建立了合理有效的静基座初始对准滤波器模型。针对系统连续旋转运行的特性,提出了简洁适用的滤波器估计误差检验方法,利用自主设计的原理样机验证了恒速偏频技术的实际可行性,对滤波算法进行了实验测试。实验结果表明,初始对准滤波算法能够稳定有效地估计IMU传感器误差,且等效东陀螺漂移估计精度优于0.0004(°)/h,该系统具有很高的工程应用潜力。  相似文献   

11.
针对基于惯性技术对铁路基础设施进行精确测绘的需求提出一种多信息融合惯性基准方案,为测量测绘提供高精度位置和姿态参考。对载体运动特点和车载状态下惯性/里程组合导航航向角误差可观性进行分析,认为天向陀螺漂移和航向误差是导致测量精度下降的主要因素,针对该问题设计了基于双向滤波、双向平滑的多信息融合方案,针对缺乏绝对位置基准的应用情况,引入"正矢"概念和相对定位精度的评判方法。仿真及试验结果表明,在陀螺常值漂移0.2(°)/h条件下,该方案相对定位精度优于0.3 mm(300 m弦正矢),显著提高了车载铁路线路测绘位置、姿态基准精度,降低了对惯性器件的要求,利用中、低精度器件实现了高精度测量定位。  相似文献   

12.
为了提高陀螺仪的使用精度,研究了陀螺仪漂移测试的伺服法实验技术.依托973项目,在国内首次完成了高精度单自由度静压液浮陀螺仪的伺服法实验.找到了影响小角度伺服法实验测试精度的主要误差源,即小角度伺服法实验的方法误差,通过对该误差的分析,提出了改进的小角度伺服实验方案.建立了小角度伺服法实验方法误差的仿真模型,用改进方案和原始方案分别进行了仿真和实验,结果表明改进方案同原始方案相比,陀螺仪漂移误差模型中的三项系数辨识精度均有提高.  相似文献   

13.
MEMS陀螺仪短时漂移特性实验研究   总被引:2,自引:0,他引:2  
针对低精度MEMS陀螺仪适合短时间工作的特点,在不同采样频率下测试了常用MEMS陀螺仪的短时漂移,对比研究并分析讨论了各种被测MEMS陀螺仪的短时漂移特性,发现石英系列MEMS陀螺仪的短时漂移在高频采样时表现出显著的周期性,并说明测试石英MEMS陀螺仪需要高采样频率,应用时需精确标定补偿其周期特性。  相似文献   

14.
MEMS硅微陀螺仪系统级建模与仿真研究   总被引:1,自引:1,他引:1  
根据MEMS陀螺仪敏感哥式加速度、测量角速度的原理,建立MEMS陀螺系统级行为模型是分析MEMS陀螺仪内部的驱动、检测和信号解调等行为过程及改进陀螺整个系统的性能的重要方法。根据MEMS陀螺的动力学方程及其内部组成,将MEMS陀螺分成驱动电路、传感器、信号调理电路等三部分,建立了MEMS陀螺系统级模拟行为模型,运用相关检测技术对角速度信号进行了提取,并对模型进行了仿真验证。仿真结果验证了所设计模型的有效性,所建模型可以用于MEMS陀螺的特性和性能分析。  相似文献   

15.
正交弹性漂移补偿电路对平台航向效应漂移的补偿作用   总被引:3,自引:0,他引:3  
分析了平台伺服电路零位和框架轴上干扰力矩引起其水平两轴航向效应漂移的机理,以及利用正交弹性漂移补偿电路减小此项航向效应漂移的机理,并通过试验测试表明此项航向效应漂移可达0.20(°)/h,采用正交弹性漂移补偿电路后可减小到原来的十分之一以内。  相似文献   

16.
针对光纤陀螺启动过程中的热致漂移误差问题,研究了一种模糊模型补偿方案。依据Shupe非互易性理论和Mohr加热模型试验的结论,以光纤环内侧温度和温度变化率为输入,以陀螺漂移为输出,建立了二输入一输出模糊模型。利用全温范围(-25℃~45℃)内光纤陀螺的恒温静态试验数据,基于自适应神经网络模糊推理系统的自学习功能,辨识出模糊规则库。通过实时施行模糊推理可实现光纤陀螺温度漂移的在线自动补偿。室温验证试验表明,陀螺的零偏稳定性由补偿前的0.037(°)/h提高到0.017(°)/h,陀螺启动时间由补偿前的30 min减少为2 min。  相似文献   

17.
针对温度变化所引起的光纤陀螺非互易相移误差,详细研究了隔热材料对减小热漂移误差的作用,并详细比较了使用不同厚度隔热层的光纤陀螺在相同变温历程下的热漂移误差大小以及达到热平衡状态所需的时间。仿真结果表明,当隔热层的厚度由0mm变化到4mm的过程中,热漂移误差的峰值由0.12(°)/h降低到了0.08(°)/h,同时达到热平衡的时间从2 520 s增加到了3 600 s。利用该仿真结果,可以在保证热启动时间满足条件的前提下找到一个最优的隔热层厚度,从而使热漂移误差的峰值最小。  相似文献   

18.
以小型无人机航姿测量系统的微小型化为背景,利用MEMS惯性测量元件研制了一种低成本微型航姿测量系统.针对MEMS器件用于载体航姿测量时精度低、易发散的问题,提出一种计算量小、实时性强的加速度信息、磁场强度信息、陀螺信息的融合方法.采用卡尔曼滤波器对系统的俯仰角、滚转角和航向角的误差进行最优估计;设计数据融合的判别准则,并根据判据的判断结果调整卡尔曼滤波器中的量测信息,使系统可用于小型无人机的定高自主飞行.实验结果表明,系统输出航姿的更新频率可达100Hz,航姿测量误差小于0.6°,航姿标准差小于0.09°;将其应用于某小型固定翼飞行器的飞行控制系统中进行自主飞行实验,完成了预定的飞行任务.  相似文献   

19.
数字闭环光纤陀螺信号处理电路通常由分立的器件构成,其体积较大,限制了光纤陀螺的体积。为了缩小光纤陀螺的体积。设计了一种通用型小尺寸数字闭环光纤陀螺信号处理电路,该电路采用一体化陶瓷外壳,不需要使用基板,通过系统级封装(SIP)的方式,把国产的前级放大器、数模转换器(DAC)、模数转换器(ADC)、后级放大器以及串口收发器的裸芯片封装在外壳里,电路体积仅为14.6mm?14.6mm?2.5 mm,与采用分立的器件相比,光纤陀螺体积缩小了四分之一。电路可以实现光纤陀螺信号的采集以及调制波形的输出,实验结果表明,电路可以实现0.01(°)/h的光纤陀螺精度。  相似文献   

20.
以单轴旋转光学捷联惯性导航系统为原型,假设水平陀螺常值漂移的影响得以完全调制,方位陀螺漂移为随时间变化的二次模型,在水平阻尼工作模式下推导了系统位置误差与方位陀螺漂移之间严格的数学关系。分别设置了方位陀螺漂移仅有常值项、一次项、二次项和全系数误差的误差模型,利用递推最小二乘算法成功辨识出设定的二次模型中各个参数值。仿真结果表明,常值项首先被辨识出来,估计时间约为14 h,估计误差为6.54e-6(°)/h;一次项系数估计时间约为30 h,估计误差为2.73e-8(°)/h;二次项系数估计时间约为42 h,估计误差为1.51e-9(°)/h;全系数估计需要45 h,估计误差为7.28e-6(°)/h。辨识结果验证了该算法的正确性。实际系统中,可适当增加总的辨识估计时间,以达到更高精度的辨识结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号