首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈玲  唐有绮 《力学学报》2019,51(4):1180-1188
轴向运动结构的横向参激振动一直是非线性动力学领域的研究热点之一. 目前研究较多的是轴向速度摄动的动力学模型,参数激励由速度的简谐波动产生. 但在工程应用中,存在轴向张力波动的运动结构较为广泛,而针对轴向张力摄动的模型研究较少. 本文研究了时变张力作用下轴向变速运动黏弹性梁的分岔与混沌. 考虑随着时间周期性变化的轴向张力,计入线性黏性阻尼,采用Kelvin模型的黏弹性本构关系,给出了梁横向非线性 振动的积分--偏微分控制方程. 首先应用四阶Galerkin截断方法将控制方程离散化,然后采用四阶Runge-Kutta方法计算系统的数值解,进而确定其动力学行为. 基于梁中点的横向位移和速度的数值结果,仿真了梁沿平均轴速、张力摄动幅值、张力摄动频率以及黏弹性系数变化的倍周期分岔与混 沌运动,并且通过计算系统的最大李雅普诺夫指数来识别其混沌行为. 结果表明:较小的平均轴速有助于梁的周期运动,梁在临界速度附近容易发生倍周期分岔与混沌行为. 随着张力摄动幅值的增大,梁的振动幅值的混沌区间不断增大. 较小的黏弹性系数和张力摄动频率更容易使梁发生混沌运动. 最后,给出时程图、频谱图、相图以及Poincaré 映射图来确定梁的混沌运动.   相似文献   

2.
Dynamical analysis of axially moving plate by finite difference method   总被引:1,自引:0,他引:1  
The complex natural frequencies for linear free vibrations and bifurcation and chaos for forced nonlinear vibration of axially moving viscoelastic plate are investigated in this paper. The governing partial differential equation of out-of-plane motion of the plate is derived by Newton’s second law. The finite difference method in spatial field is applied to the differential equation to study the instability due to flutter and divergence. The finite difference method in both spatial and temporal field is used in the analysis of a nonlinear partial differential equation to detect bifurcations and chaos of a nonlinear forced vibration of the system. Numerical results show that, with the increasing axially moving speed, the increasing excitation amplitude, and the decreasing viscosity coefficient, the equilibrium loses its stability and bifurcates into periodic motion, and then the periodic motion becomes chaotic motion by period-doubling bifurcation.  相似文献   

3.
研究了黏弹性传动带在1:1内共振时的横向非平面非线性动力学特性. 首先,利用Hamilton原理建立了黏弹性传动带横向非平面非线性动力学方程. 然后综合应用多尺度法和Galerkin离散法对偏微分形式的动力学方程进行摄动分析,得到了四维平均方程. 对平均方程的稳定性进行了分析,从理论上讨论了动力系统解的稳定性变化情况. 最后数值模拟结果表明黏弹性传动带系统存在混沌运动、概周期运动和周期运动.   相似文献   

4.
In this paper, the viscoelastic theory is applied to the axially moving Levy-type plate with two simply supported and two free edges. On the basis of the elastic – viscoelastic equivalence, a linear mathematical model in the form of the equilibrium state equation of the moving plate is derived in the complex frequency domain. Numerical calculations of dynamic stability were conducted for a steel plate. The effects of transport speed and relaxation times modeled with two-parameter Kelvin–Voigt and three-parameter Zener rheological models on the dynamic behavior of the axially moving viscoelastic plate are analyzed.  相似文献   

5.
Under the consideration of harmonic fluctuations of initial tension and axially velocity, a nonlinear governing equation for transverse vibration of an axially accelerating string is set up by using the equation of motion for a 3-dimensional deformable body with initial stresses. The Kelvin model is used to describe viscoelastic behaviors of the material. The basis function of the complex-mode Galerkin method for axially accelerating nonlinear strings is constructed by using the modal function of linear moving strings with constant axially transport velocity. By the constructed basis functions, the application of the complex-mode Galerkin method in nonlinear vibration analysis of an axially accelerating viscoelastic string is investigated. Numerical results show that the convergence velocity of the complex-mode Galerkin method is higher than that of the real-mode Galerkin method for a variable coefficient gyroscopic system.  相似文献   

6.
A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.  相似文献   

7.
轴向运动系统的横向非线性振动一直是国内外研究的热点课题之一.目前相关研究大都是针对齐次边界条件的.但是在工程实际中,非齐次边界条件更为常见,而针对非齐次边界条件的研究相对较少.为深入研究非齐次边界条件对轴向运动系统横向非线性振动的影响,本文以轴向变速运动黏弹性Euler梁为例,引入由黏弹性引起的非齐次边界条件,同时还引入由轴向加速度引起的径向变化张力,建立梁横向振动的积分-偏微分型运动方程,并导出了相应的非齐次边界条件.采用直接多尺度法分析了梁的次谐波参数共振.由可解性条件得到了梁的稳态响应,并根据Routh-Hurvitz判据确定了系统稳态响应的稳定性.通过数值例子讨论了黏弹性系数,轴向运动速度,轴向速度脉动幅值和非线性系数对幅频响应的影响,并详细对比分析了非齐次边界条件和齐次边界条件对幅频响应的影响.结果表明:随着黏弹性系数的增大,非齐次边界条件下的零解失稳区域和稳态响应幅值比齐次边界条件下的失稳区域和幅值大,非齐次边界条件对高阶次谐波参数共振的影响更加显著.最后,引入微分求积法来验证直接多尺度法的近似解结果.   相似文献   

8.
The weakly forced vibration of an axially moving viscoelastic beam is investigated.The viscoelastic material of the beam is constituted by the standard linear solid model with the material time derivative involved.The nonlinear equations governing the transverse vibration are derived from the dynamical,constitutive,and geometrical relations.The method of multiple scales is used to determine the steady-state response.The modulation equation is derived from the solvability condition of eliminating secular terms.Closed-form expressions of the amplitude and existence condition of nontrivial steady-state response are derived from the modulation equation.The stability of nontrivial steady-state response is examined via the Routh-Hurwitz criterion.  相似文献   

9.
Principal parametric resonance in transverse vibration is investigated for viscoelastic beams moving with axial pulsating speed. A nonlinear partial-differential equation governing the transverse vibration is derived from the dynamical, constitutive, and geometrical relations. Under certain assumption, the partial-differential reduces to an integro-partial-differential equation for transverse vibration of axially accelerating viscoelastic nonlinear beams. The method of multiple scales is applied to two equations to calculate the steady-state response. Closed form solutions for the amplitude of the vibration are derived from the solvability condition of eliminating secular terms. The stability of straight equilibrium and nontrivial steady-state response are analyzed by use of the Lyapunov linearized stability theory. Numerical examples are presented to highlight the effects of speed pulsation, viscoelascity, and nonlinearity and to compare results obtained from two equations.  相似文献   

10.
To model the axially moving viscoelastic web material a two-dimensional rheological element is used in this paper. This model is formed by elastic region and viscoelastic region. Using two-dimensional rheological model and the plate theory the differential equation of motion in the form of the eighth-order linear partial differential equation that governs the transverse vibrations of the system is derived. The Galerkin method is applied to simplify the governing equation into two-order truncated system defined by the set of ordinary differential equations. Numerical investigations of dynamic stability of the paper web were carried out. The effects of the transport speed and the internal damping on the dynamic behaviour of the axially moving web are presented in this paper.  相似文献   

11.
轴向运动弦线的纵向振动及其控制   总被引:35,自引:0,他引:35  
陈立群  Jean W.Zu 《力学进展》2001,31(4):535-546
综述轴向运动弦线纵向振动及其控制问题的研究进展.多种工程 系统如动力传送带、磁带、纸带、纺织纤维、带锯、空中缆车索道等均 涉及轴向运动弦线的纵向振动.对线性模型而言,除早期结果外,总结了 运动弦线的模态分析、具有复杂约束和耦合的运动弦线振动和运动弦线 参数振动的近期研究.对非线性模型而言,提出了轴向运动弦线大幅纵向 振动的运动微分方程,概述了离散化和直接近似解析分析、用黏弹性材 料模型化阻尼机制和动力传输系统的耦合振动研究的新进展.讨论了轴 向运动弦线振动主动控制的研究现状,包括能控性和能观性,控制分析的 频域方法和能量方法,振动的自适应控制和非线性振动的控制.最后指出 该研究方向今后需要研究的若干重要问题,包括运动弦线的非线性动力学 行为、黏弹性运动弦线的振动、含运动弦线的混杂系统的控制和轴向运 动弦线非线性振动的控制.  相似文献   

12.
Based on the Kelvin viscoelastic differential constitutive law and the motion equation of the axially moving belt, the nonlinear dynamic model of the viscoelastic axial moving belt was established. And then it was reduced to be a linear differential system which the analytical solutions with a constant transport velocity and with a harmonically varying transport velocity were obtained by applying Lie group transformations. According to the nonlinear dynamic model, the effects of material parameters and the steady-state velocity and the perturbed axial velocity of the belt on the dynamic responses of the belts were investigated by the research of digital simulation . The result shows:1) The nonlinear vibration frequency of the belt will become small when the relocity of the belt increases . 2) Increasing the value of viscosity or decreasing the value of elasticity leads to a deceasing in vibration frequencies. 3) The most effects of the transverse amplitudes come from the frequency of the perturbed veloc  相似文献   

13.
粘弹性轴向运动梁的非线性动力学行为   总被引:3,自引:0,他引:3  
杨晓东  陈立群 《力学季刊》2005,26(1):157-162
本文研究了带有小脉动的轴向运动粘弹性梁的分岔及混沌现象。建立了系统的动力学模型。通过二阶Galerkin截断,把描述系统运动的偏微分方程离散化。利用数值方法分别分析了几种运动脉动频率时,梁随轴向运动脉动幅值,平均速度及粘弹性系数等几个参数变化时的运动分岔行为。利用Lyapunov指数识别系统的动力学行为,区分准周期振动和混沌运动。  相似文献   

14.
In this article, transverse free vibrations of axially moving nanobeams subjected to axial tension are studied based on nonlocal stress elasticity theory. A new higher-order differential equation of motion is derived from the variational principle with corresponding higher-order, non-classical boundary conditions. Two supporting conditions are investigated, i.e. simple supports and clamped supports. Effects of nonlocal nanoscale, dimensionless axial velocity, density and axial tension on natural frequencies are presented and discussed through numerical examples. It is found that these factors have great influence on the dynamic behaviour of an axially moving nanobeam. In particular, the nonlocal effect tends to induce higher vibration frequencies as compared to the results obtained from classical vibration theory. Analytical solutions for critical velocity of these nanobeams when the frequency vanishes are also derived and the influences of nonlocal nanoscale and axial tension on the critical velocity are discussed.  相似文献   

15.
In this paper, a Fourier expansion-based differential quadrature (FDQ) method is developed to analyze numerically the transverse nonlinear vibrations of an axially accelerating viscoelastic beam. The partial differential nonlinear governing equation is discretized in space region and in time domain using FDQ and Runge–Kutta–Fehlberg methods, respectively. The accuracy of the proposed method is represented by two numerical examples. The nonlinear dynamical behaviors, such as the bifurcations and chaotic motions of the axially accelerating viscoelastic beam, are investigated using the bifurcation diagrams, Lyapunov exponents, Poincare maps, and three-dimensional phase portraits. The bifurcation diagrams for the in-plane responses to the mean axial velocity, the amplitude of velocity fluctuation, and the frequency of velocity fluctuation are, respectively, presented when other parameters are fixed. The Lyapunov exponents are calculated to further identify the existence of the periodic and chaotic motions in the transverse nonlinear vibrations of the axially accelerating viscoelastic beam. The conclusion is drawn from numerical simulation results that the FDQ method is a simple and efficient method for the analysis of the nonlinear dynamics of the axially accelerating viscoelastic beam.  相似文献   

16.
The dynamical response of axially moving, partially supported, stretched viscoelastic belts is investigated analytically in this paper. The Kelvin–Voigt viscoelastic material model is considered and material, not partial, time derivative is employed in the viscoelastic constitutive relation. The string is considered as a three part system: one part resting on a nonlinear foundation and two that are free to vibrate. The tension in the belt span is assumed to vary periodically over a mean value (as it occurs in real mechanisms), and the corresponding equation of motion is derived by applying Newton’s second law of motion for an infinitesimal element of the string. The method of multiple scales is applied to the governing equation of motion, and nonlinear natural frequencies and complex eigenfunctions of the system are obtained analytically. Regarding the resonance case, the limit-cycle of response is formulated analytically. Finally, the effects of system parameters such as axial speed, excitation characteristics, viscousity and foundation modulus on the dynamical response, natural frequencies and bifurcation points of system are presented.  相似文献   

17.
Transverse vibration characteristics of axially moving viscoelastic plate   总被引:4,自引:0,他引:4  
The dynamic characteristics and stability of axially moving viscoelastic rect- angular thin plate are investigated.Based on the two dimensional viscoelastic differential constitutive relation,the differential equations of motion of the axially moving viscoelastic plate are established.Dimensionless complex frequencies of an axially moving viscoelastic plate with four edges simply supported,two opposite edges simply supported and other two edges clamped are calculated by the differential quadrature method.The effects of the aspect ratio,moving speed and dimensionless delay time of the material on the trans- verse vibration and stability of the axially moving viscoelastic plate are analyzed.  相似文献   

18.
This paper investigates nonlinear dynamical behaviors in transverse motion of an axially accelerating viscoelastic beam via the differential quadrature method. The governing equation, a nonlinear partial-differential equation, is derived from the viscoelastic constitution relation using the material derivative. The differential quadrature scheme is developed to solve numerically the governing equation. Based on the numerical solutions, the nonlinear dynamical behaviors are identified by use of the Poincare map and the phase portrait. The bifurcation diagrams are presented in the case that the mean axial speed and the amplitude of the speed fluctuation are respectively varied while other parameters are fixed. The Lyapunov exponent and the initial value sensitivity of the different points of the beam, calculated from the time series based on the numerical solutions, are used to indicate periodic motions or chaotic motions occurring in the transverse motion of the axially accelerating viscoelastic beam.  相似文献   

19.
In this paper, bifurcation and chaos of an axially moving viscoelastic string are investigated. The 1-term and the 2-term Galerkin truncations are respectively employed to simplify the partial-differential equation that governs the transverse motions of the string into a set of ordinary differential equations. The bifurcation diagrams are presented in the case that the transport speed, the amplitude of the periodic perturbation, or the dynamic viscosity is respectively varied while other parameters are fixed. The dynamical behaviors are numerically identified based on the Poincare maps. Numerical simulations indicate that periodic, quasi-periodic and chaotic motions occur in the transverse vibrations of the axially moving viscoelastic string.  相似文献   

20.
A convenient and universal residue calculus method is proposed to study the stochastic response behaviors of an axially moving viscoelastic beam with random noise excitations and fractional order constitutive relationship, where the random excitation can be decomposed as a nonstationary stochastic process, Mittag-Leffler internal noise, and external stationary noise excitation. Then, based on the Laplace transform approach, we derived the mean value function, variance function and covariance function through the Green's function technique and the residue calculus method, and obtained theoretical results. In some special case of fractional order derivative α , the Monte Carlo approach and error function results were applied to check the effectiveness of the analytical results, and good agreement was found. Finally in a general-purpose case, we also confirmed the analytical conclusion via the direct Monte Carlo simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号