首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamical analysis of axially moving plate by finite difference method
Authors:Xiao-Dong Yang  Wei Zhang  Li-Qun Chen  Ming-Hui Yao
Institution:(1) College of Naval Architecture and Power, Naval University of Engineering, Wuhan, 430033, People’s Republic of China
Abstract:The complex natural frequencies for linear free vibrations and bifurcation and chaos for forced nonlinear vibration of axially moving viscoelastic plate are investigated in this paper. The governing partial differential equation of out-of-plane motion of the plate is derived by Newton’s second law. The finite difference method in spatial field is applied to the differential equation to study the instability due to flutter and divergence. The finite difference method in both spatial and temporal field is used in the analysis of a nonlinear partial differential equation to detect bifurcations and chaos of a nonlinear forced vibration of the system. Numerical results show that, with the increasing axially moving speed, the increasing excitation amplitude, and the decreasing viscosity coefficient, the equilibrium loses its stability and bifurcates into periodic motion, and then the periodic motion becomes chaotic motion by period-doubling bifurcation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号