首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
自由活塞压缩管ALE方法数值模拟   总被引:1,自引:0,他引:1  
当前国际上实现高焓气体流动的实验手段之一是自由活塞驱动类脉冲设备,包括自由活塞激波风洞和自由活塞膨胀管.采用自由活塞压缩管作为激波风洞和膨胀管的驱动段时,其驱动能力在很大程度上决定了该类设备的性能.本文采用计算流体力学中任意拉格朗日——欧拉方法(arbitrary Lagrangian Eulerian)数值模拟了压缩管内部的自由活塞运动和气体流动特征.采用移动网格技术来适应活塞运动边界,耦合求解网格运动和气体流动过程,并通过双时间步长方法进行流体运动的时间积分.为了满足几何守恒律(geometric conservation law),对移动网格的法向矢量和表面面积计算进行了修正.不同时刻的活塞位置试验测量结果及欧拉方法预测结果,以及基于简单波理论获得的运动活塞底部气体压力、活塞速度与活塞位置都与当前的ALE方法十分一致.该工作为下一步数值模拟自由活塞激波风洞和自由活塞膨胀管中包括压缩管、激波管和喷管等不同部位的耦合流动提供了基础.   相似文献   

2.
在中国科学院力学研究所$\varPhi $ 800 mm高温低密度激波管上进行电磁波在等离子体中传输机理研究时,低密度和强激波条件下,由于气体解离和电离等非平衡过程,使得激波后2区宽度显著减小;同时由于边界层效应造成激波衰减和接触面加速,使得激波后2区长度进一步减小.这两个效应导致激波管2区实验观测 时间减小,2区气体处于非平衡状态,增加了观察数据的不稳定性和数据分析的难度.本文提出在$\varPhi 800 $ mm高温低密度激波 管中采用氩气(Ar)和空气(Air)混合气替代纯空气作为激波管实验介质气体.利用Ar不解离和难电离的特性,减小激波前后压缩比,从而 增加激波后2区实验时间和气体长度. 采用Langmuir 静电探针和微波透射诊断技术测量激波后电子密度,同时利用探针测量激波后2区实验时间.结果显示,在Ar+Air混合气实验中,激波波后电子密度可达与纯Air同样的10$^{13}$cm$^{ - 3}$量级.在与纯Air相同的电子密度和碰撞频率条件下,采用95%Ar+5%Air和90%Ar+10%Air两种混合气,激波后2区实验时间和气体长度约为纯Air条件下的5$\sim $10倍,其中2区实验时间为300$\sim $800 $\mu$s,2区气体长度1$\sim $1.5 m.在$\varPhi $800 mm激波管中采用Ar+Air介质气体进行电磁波传输实验,获得了比在纯Air介质中与理论预测更一致的结果.   相似文献   

3.
在中国科学院力学研究所Φ800 mm高温低密度激波管上进行电磁波在等离子体中传输机理研究时,低密度和强激波条件下,由于气体解离和电离等非平衡过程,使得激波后2区宽度显著减小;同时由于边界层效应造成激波衰减和接触面加速,使得激波后2区长度进一步减小.这两个效应导致激波管2区实验观测时间减小,2区气体处于非平衡状态,增加了观察数据的不稳定性和数据分析的难度.本文提出在Φ800 mm高温低密度激波管中采用氩气(Ar)和空气(Air)混合气替代纯空气作为激波管实验介质气体.利用Ar不解离和难电离的特性,减小激波前后压缩比,从而增加激波后2区实验时间和气体长度.采用Langmuir静电探针和微波透射诊断技术测量激波后电子密度,同时利用探针测量激波后2区实验时间.结果显示,在Ar+Air混合气实验中,激波波后电子密度可达与纯Air同样的10~(13)cm~(-3)量级.在与纯Air相同的电子密度和碰撞频率条件下,采用95%Ar+5%Air和90%Ar+10%Air两种混合气,激波后2区实验时间和气体长度约为纯Air条件下的5~10倍,其中2区实验时间为300~800μs,2区气体长度1~1.5 m.在Φ800 mm激波管中采用Ar+Air介质气体进行电磁波传输实验,获得了比在纯Air介质中与理论预测更一致的结果.  相似文献   

4.
徐立功 《力学进展》1992,22(3):324-331
自由活塞激波风洞是一种使用自由活塞压缩器驱动的高焓脉冲型激波风洞。这种风洞是由R J Stalker提出并在澳大利亚国立大学首先建成和逐渐发展起来的高焓实验设备。经过30多年的改进与发展,日趋完善,现已成为研究高超声速气动加热、计及真实气体效应的气体动力学现象、特别是超声速或高超声速燃氢冲压发动机(scamjet)的重要设备之一,受到国际上航空航天界的重视。本文概述了自由活塞激波风洞的发展过程,系统地阐述了这种设备的结构特点和运行原理,给出了性能参数的计算方法和算例,及其性能指标,并讨论了这类风洞的优缺点。   相似文献   

5.
复合材料立管结构参数与立管力学性能存在紧密的关联性,掌握设计参数对缠绕立管力学性能的影响规律非常必要.考虑缠绕工艺引起的孔隙缺陷,基于复合材料弹性理论及孔隙微观理论模型,构建了纳米增强预浸料缠绕立管形变模型;其次,采用局部敏感度分析法,分别讨论了缠绕立管应力与位移对孔隙含量、孔隙形状、纳米颗粒含量、纤维体积含量、缠绕层数、缠绕角度及内压的局部敏感性;最终,数值结果表明:孔隙含量对轴向应力的影响局部敏感性较强,在孔隙含量为2.8 %~3.2 %之间时,轴向应力的局部敏感性数值快速从负数增长到正值;而孔隙的引入,使得其它设计参数对立管应力与位移的局部敏感性数值的变化趋势无明显影响,但大大影响了敏感性的数值大小;此外,径向位移对孔隙、纳米颗粒含量等所有参数明显不敏感.  相似文献   

6.
稀薄流到连续流的气体运动论模型方程算法研究   总被引:10,自引:0,他引:10  
李志辉  张涵信 《力学学报》2002,34(2):145-155
通过引入碰撞松弛参数和当地平衡态分布函数对BGK模型方程进行修正,确定含流态控制参数可描述不同流域气体流动特性的气体分子速度分布函数的简化控制方程。发展和应用离散速度坐标法于气体分子速度空间,利用一套在物理空间和时间上连续而速度空间离散的分布函数来代替原分布函数对速度空间的连续依赖性。基于非定常时间分裂数值计算方法和无波动、无自由参数的NND耗散差分格式,建立直接求解气体分子速度分布函数的气体运动论有限差分数值方法。推广应用改进的Gauss-Hermite无穷积分法和华罗庚-王元提出的以单和逼近重积分的黄金分割数论积分方法等,对离散速度空间进行宏观取矩获取物理空间各点的气体流动参数,由此发展一套从稀薄流到连续流各流域统一的气体运动论数值算法。通过对不同Knudsen数下一维激波管问题、二维圆柱绕流和三维球体绕流的初步数值实验表明文中发展的数值算法是可行的。  相似文献   

7.
双驱动激波管稀疏波破膜技术研究   总被引:1,自引:0,他引:1  
董志勇  韩肇元 《力学季刊》2000,21(4):427-431
本文介绍了在双驱动激波管中运用稀疏波破膜的技术。在以压缩空气和氮气作实验气体的情形下,实验研究了中间段长度、稀疏波强度及中间段B膜的破膜压力(压差)对第二激波追韩第一激波的影响。实验结果表明:中间段的长短,显著地制约着前后两道激波的间隔;稀疏波强度及中间段B膜的破膜压力对稀疏波破膜时间及第二激小对反射稀疏波的追赶有重要影响。  相似文献   

8.
CT扫描的图像质量与设置的参数和开机时间有关,扫描参数不同导致扫描结果不同,开机时间对系统稳定性有一定影响,从而导致CT图像质量有差异。本文采用高分辨综合扫描分析系统nanoVoxel-2792扫描混凝土试件,对比不同管电压、管电流和设备开机时间对CT图像质量的影响。结果表明,不同管电压、管电流扫描的图像质量存在差异,电压值越高,图像对比度越高,环状伪影越不明显,噪声越少;管电流对图像质量影响较小,电流值越大图像质量越好。型号为nanoVoxel-2792的显微CT,管电压设置为130kV,管电流设置为100μA时扫描结果最好,CT开机时间对图像质量影响较小,开机2h后系统更加稳定。  相似文献   

9.
为了预测氢氧定容燃烧驱动的高温激波管性能,需要准确分析激波管非定常化学非平衡流动过程.本文在破膜前的驱动段定容燃烧以及破膜后的化学非平衡流动数值模拟中,引入双时间步长方法,发展高温激波管化学非平衡流动数值模拟方法,该方法在时间上具有二阶精度.计算结果与目前存在的激波管流动解析解以及零维化学反应系统的数值解进行了比较,吻合较好.对于典型高温激波管状态,采用有限体积方法离散准一维流动Euler控制方程,并通过将流动过程和化学反应动力学过程耦合求解,获得了激波管内部的化学非平衡流动特征.  相似文献   

10.
气相爆轰驱动二级轻气炮内弹道数值模拟   总被引:2,自引:1,他引:1  
二级轻气炮是超高速弹丸驱动技术中使用最广泛的技术之一, 它在超高速气动物理现象及材料高速碰撞下力学性能的实验研究和验证方面起着不可或缺的作用. 中国科学院力学研究所基于爆轰驱动方法研制了一座大型二级轻气炮, 可弥补高压气体驱动能力有限和火药使用受限的不足. 本文基于经过实验验证的准一维数值模拟方法, 详细研究了该设备的内弹道动力学参数及发射性能, 并探讨了不同发射方法及装填参数对设备性能的影响规律和机理. 研究结果表明, 氢氧爆轰驱动相比于高压气体驱动具有明显优势; 不同爆轰驱动方式对弹丸发射性能影响较小, 但其影响到整个设备的强度设计; 对装填运行参数的研究表明增大爆轰段充气压力可以有效加强轻气炮发射性能, 而活塞质量变化对发射速度的影响较为复杂, 轻气炮实际运行中受设备设计指标及模型材料性能的限制, 优化过程中需要同时调整3种参数以达到轻气炮最佳性能.   相似文献   

11.
A new friction operated single piston shock tube driver design that is capable of generating shock waves of Mach number 1.1 to 2 is presented. By using different test gases and evacuating the driven section Mach 5 shock waves can easily be produced. The driver is efficient with shock wave Mach numbers within 9% of that predicted by ideal shock tube theory and the non-dimensional formation length lies between 20 and 40. The brake pad mechanism, that restrains the piston until tests commence, removes the necessity of venting an auxiliary chamber rapidly, thus speeding up the displacement of the piston. It is believed that the design is a practical, simple and cost effective way of generating reproducible shock tube tests with very short test turn around times, while removing the necessity of using a diaphragm and exposing the test gases to the atmosphere. Results for three pistons with masses of 4.4, 0.71 and 0.38 kg (brass, PVC and hollow aluminium respectively) with driver gauge pressures of between 2 and 50 bar (Mach 1.2 to 2) are given. Received 27 February 1998 / Accepted 8 July 1998  相似文献   

12.
Preliminary results in the Marseille free-piston shock-tunnel facility are presented. The compression of the driver gas by the piston is studied experimentally for two different geometries of the end of the compression tube. Peak pressures obtained with the end of the compression tube closed, and with bursting of the diaphragm separating the high pressure from the low pressure chamber, are compared with calculated values in the cases of N2 and He as driver gases. A phenomenon of accoustic resonance has been uncovered, generating strong pressure oscillations which, if not properly dealt with, could impair the quality of the useful flow in such a facility.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

13.
A two-stage free-piston driver   总被引:2,自引:0,他引:2  
The overall cost of free-piston driven facilities can be substantially reduced if the contraction between the compression and shock tubes is replaced with a constant area section. However, with such an implementation, a new driver concept is required in order to achieve a realistic facility length. This paper describes a new free-piston driver type for expansion tubes which satisfies the above criteria. The technique is known as the two-stage free-piston driver where the driver gas is compressed in two distinct stages with a unique compound piston design. A new facility has been constructed (X-2) which is described in some detail. A quasi-one-dimensional numerical model of the compression process is also developed which agrees well with driver tube experimental results. This new driver is coupled to an expansion tube arrangement where super-orbital test flows are generated. The results show that a two-stage free-piston driver is capable of driving hypervelocity expansion tubes and therefore new facilities of increased size but reduced cost are now possible. Received 18 May 1998 / Accepted 18 October 1998  相似文献   

14.
We set up a diaphragmless driver section as the first step towards developing a shock tube at microscale which has high experimental efficiency, independent of tube dimensions or the ratio of driver and driven pressure. The experiment described in this paper is performed by using our diaphragmless driver section. We measured the operating time and the velocity of the fast opening valve. Additionally we have introduced and calculated the differential equation, by using the Runge–Kutta–Gill method, to understand the motion of the fast opening valve. We achieved good agreement between experimental and calculated results for the velocity. We can conclude that the diaphragmless driver section is highly suitable for a narrow channel shock tube.   相似文献   

15.
A new technique is proposed for a shock tube driven by a freely moving piston. In a conventional free-piston-driven shock tube, a rupture disk is employed between the compression tube and the shock generation tube. In the present method, however, the conventional rupture disk is replaced by a newly developed fast action valve which is activated by the compressed gas generated in the compression tube. The present method enables us to generate high Mach number shock waves of arbitrary strength with good reproducibility. The performance of the new method is demonstrated experimentally. This also enables us to be carefree to scattering of fragments of the rupture disk. Received 6 June 1996 / Accepted 6 October 1996  相似文献   

16.
An experimental study of the tuned operation of a free-piston driver is described. Two series of experiments were carried out. The first was performed to validate a theory which has been developed recently to predict the operation with a small free piston-driver named NAL-CTA. The driver has a transparent window at the end of the compression tube to allow observation of piston motion. In the second, a theoretically determined length of piston buffer was used to tune the operating condition. Piston collision speeds of less than 3 m/sec were observed. A quasi-one-dimensional numerical code including leakage of driver gas through the piston clearance gap was derived. The numerical result agreed well with the experimental result. It is concluded that tuned operation, by using an appropriate length of the piston buffer, can be extrapolated to large-size tunnels. Received 6 March 1998 / Accepted 29 October 1998  相似文献   

17.
Improvement of a free piston driver for a high-enthalpy shock tunnel   总被引:1,自引:0,他引:1  
In order to improve the operation of a high-enthalpy free piston shock tunnel its tuned operation was studied analytically and experimentally. First, the piston motion in the free piston driver tube was analytically solved by proposing a simple piston/gasdynamic model, and the tuned operation condition was formulated as an eigenvalue with which the piston has sufficiently high speed at the moment of diaphragm rupture, so as to maintain a constant driver gas pressure, and reduces its speed to come to rest when very closely approaching the end of the driver tube. Second, the result of this analysis was validated by its comparison with experiments which were conducted in the medium-sized free piston shock tunnel HEK installed at the NAL Kakuda Research Center. By observing the detail of piston landing at the end of the driver tube the present tuned operation was found to be successfully achieved with the operating condition given here. Its advantages in improving the pressure recovery factor and in enhancing the stagnation enthalpy were successfully demonstrated. Received 8 June 1997 / Accepted 1 October 1997  相似文献   

18.
The University of Queensland (UQ) is currently developing high Mach number, high total pressure scramjet flow conditions in its X2 and X3 expansion tube facilities. These conditions involve shock-processing a high-density air test gas followed by its unsteady expansion into a low-pressure acceleration tube. This relatively slow shock-processing requires the driver to supply high pressure gas for a significantly greater duration than normally required for superorbital flow conditions. One technique to extend the duration is to operate a tuned free-piston driver. For X2, this involves the use of a very light piston at high speeds so that, following diaphragm rupture, the piston displacement substitutes for vented driver gas, thus maintaining driver pressure much longer. However, this presents challenges in terms of higher piston loading and also safely stopping the piston. This article discusses the tuned driver concept, the design of a very lightweight but highly stressed piston, and details the successful development of a new set of tuned free-piston driver conditions for X2.  相似文献   

19.
A numerical investigation of the mixed convection heat transfer from vertical helically coiled tubes in a cylindrical shell at various Reynolds and Rayleigh numbers, various coil‐to‐tube diameter ratios and non‐dimensional coil pitches was carried out. The particular difference in this study compared with other similar studies is the boundary conditions for the helical coil. Most studies focus on constant wall temperature or constant heat flux, whereas in this study it was a fluid‐to‐fluid heat exchanger. The purpose of this article is to assess the influence of the tube diameter, coil pitch and shell‐side mass flow rate on shell‐side heat transfer coefficient of the heat exchanger. Different characteristic lengths were used in the Nusselt number calculations to determine which length best fits the data and finally it has been shown that the normalized length of the shell‐side of the heat exchanger reasonably demonstrates the desired relation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号