首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of numerical simulations and experimental investigations of self-oscillations arising in the case of impingement of an overexpanded or underexpanded jet onto an obstacle with a spike are reported. The mechanisms of the emergence and maintaining of self-oscillations for overexpanded and underexpanded jets are elucidated. It is demonstrated that self-oscillations are caused by disturbances in a supersonic jet, which induce mass transfer between the supersonic flow and the region between the shock wave and the obstacle. The feedback is ensured by acoustic waves generated by the radial jet on the obstacle. These waves propagate in the gas surrounding the jet, impinge onto the nozzle exit, and initiate disturbances of the supersonic jet parameters. In the overexpanded jet, these disturbances penetrate into the jet core, where they are amplified in oblique shock waves.  相似文献   

2.
A density-based solver with the classical fourth-order accurate Runge-Kutta temporal discretization scheme was developed and applied to study under-expanded jets issued through millimetre-size nozzles for applications in high-pressure direct-injection (DI) gaseous-fuelled propulsion systems. Both large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) turbulence modelling techniques were used to evaluate the performance of the new code. The computational results were compared both quantitatively and qualitatively against available data from the literature. After initial evaluation of the code, the computational framework was used in conjunction with RANS modelling (k-ω SST) to investigate the effect of nozzle exit geometry on the characteristics of gaseous jets issued from millimetre-size nozzles. Cylindrical nozzles with various length to diameter ratios, namely 5, 10 and 20, in addition to a diverging conical nozzle, were studied. This study is believed to be the first to provide a direct comparison between RANS and LES within the context of nozzle exit profiling for advanced high-pressure injection systems with the formation of under-expanded jets. It was found that reducing the length of the straight section of the nozzle by 50% resulted in a slightly higher level of under-expansion (∼2.6% higher pressure at the nozzle exit) and ∼1% higher mass flow rate. It was also found that a nozzle with 50% shorter length resulted in ∼6% longer jet penetration length. At a constant nozzle pressure ratio (NPR), a lower nozzle length to diameter ratio resulted in a noticeably higher jet penetration. It was found that with a diverging conical nozzle, a fairly higher penetration length could be achieved if an under-expanded jet formed downstream of the nozzle exit compared to a jet issued from a straight nozzle with the same NPR. This was attributed to the radial restriction of the flow and consequently formation of a relatively smaller reflected shock angle. With the conical nozzle used in this study and a 30 bar injection pressure, an under-expanded hydrogen jet exhibited ∼60% higher penetration length compared to an under-expanded nitrogen jet at 100 μs after start of injection. Moreover, the former jet exhibited ∼22% higher penetration compared to a nitrogen jet issued through the conical profile with 150 bar injection pressure.  相似文献   

3.
为了探索高温高压周向均布4股贴壁燃气射流在受限空间中的扩展特性,设计了贴壁燃气射流在圆柱形充液室内扩展的实验装置,借助数字高速录像系统,观察了4股贴壁燃气射流在充液室中的扩展过程,发现由Kelvin-Helmholtz不稳定性引起的表面不规则一直存在于整个射流扩展过程;通过处理拍摄记录的射流扩展序列图,获得不同时刻射流扩展的轴向和径向位移; 对比了不同破膜喷射压力和喷孔结构参数对4股贴壁燃气射流扩展过程的影响。实验结果表明:喷孔面积越大,贴壁射流初期轴向扩展速度越大,但由于径向扩展达到交汇的时间较早,湍流掺混和干涉强烈,衰减也越快;破膜喷射压力越高,射流径向扩展到达交汇的时间越短; 破膜喷射压力从12 MPa升高到20 MPa,射流轴向扩展速度大幅增加,气液湍流掺混效应增强。  相似文献   

4.
5.
The spatial structure of the flow in a supersonic underexpanded jet exhausting from a convergent nozzle with vortex generators (chevrons) at the exit is experimentally studied. Exhaustion of a supersonic underexpanded jet from a nozzle with chevrons at the nozzle exit is numerically simulated with the use of the Fluent commercial software package. The experimental and numerical data are demonstrated to be in reasonable agreement. The influence of chevrons on the process of gas mixing is estimated.  相似文献   

6.
Detailed near-field structures of highly underexpanded sonic free jets have been investigated with the help of computational fluid dynamics. Two-dimensional, axisymmetric Euler equations have been chosen to predict the underexpanded jets, and the third-order total variation diminishing finite-difference scheme has been applied to solve the system of governing equations numerically. Several different nozzles have been employed to investigate the influence of the nozzle geometry on the near-field structures of highly underexpanded sonic free jets. The results obtained show that the distance from the nozzle exit to the Mach disk is an increasing function of the jet–pressure ratio, which also significantly influences the shape of the jet boundary. The diameter of the Mach disk increases with the jet–pressure ratio, and it is further significantly influenced by the nozzle geometry, unlike the distance of the Mach disk from the nozzle exit. However, such a dependence on the nozzle geometry is no longer found when an effective-diameter concept is taken into account for the flow from a sharp-edged orifice. A good correlation in the diameters of the Mach disk is obtained, so that the near-field structure of highly underexpanded sonic free jets is a unique function of the pressure ratio, regardless of the nozzle geometry.  相似文献   

7.
Hybrid RANS/LES simulations of two incompressible jets are performed with the Zonal Detached Eddy Simulation (ZDES). Two functioning modes of the ZDES for the selection of RANS and DES areas are evaluated, namely the user-defined mode (mode 1) and the global- or automatic- mode (mode 2). The RANS-to-LES transition occurs quickly downstream of the nozzle exit and is found to involve the same physics as a laminar to turbulent transition with vortex pairing near the nozzle exit. The effect of the delay in the RANS-to-LES transition on the jet flow development is analyzed. In particular, the delay in the formation of small-scale turbulent structures results in too high turbulence levels in the mixing layers. Furthermore, it is shown, for two cases, that the injection of synthetic turbulence at the nozzle inlet, originally targeted at reproducing the experimental turbulence level in the jet core, has a significant impact on the mixing layer as it accelerates the RANS-to-LES transition, reduces the spatial wavelength of the vortex pairing and promotes the production of fine-scale turbulence which leads to a better agreement with experiments.  相似文献   

8.
We present an experimental study of a supersonic nozzle with supersonic iodine injection. This nozzle simulates Chemical Oxygen Iodine Laser (COIL) flow conditions with non-reacting, cold flows. During the experiments, we used a laser sheet near 565 nm to excite fluorescence in iodine, which we imaged with an intensified and gated CCD camera. We captured streamwise and semi-spanwise (oblique-view) images, with fluorescence revealing the material injected into the flow. We identified the flow structures in the images, and produced quantitative characterizations of the flow morphology and of the mixing between the primary and injected flow. We considered four injection scenarios. The first scenario includes a single injector positioned downstream of the nozzle throat. To enhance the mixing between the flows, trip jets are placed in the wake of the single jet. The sonic trip jets, significantly smaller than the primary supersonic iodine jet, are intended to destabilize the counter-rotating vortex pair (CRVP) of the primary jet. We compare three different trip jet configurations for their ability to enhance mixing between the oxygen and iodine flows.  相似文献   

9.
水下欠膨胀高速气体射流的实验研究   总被引:14,自引:0,他引:14  
戚隆溪  曹勇  王柏懿 《力学学报》2000,32(6):667-675
采用实验途径研究了下水高速气体射流的动力学特性,研制了水下高速气体射流实验系统并发展了相应的测试手段。实验中,用插入式静压探针测量了射流轴线静压分布;用γ射线衰减法测量了径向空隙率分布,从而揭示了水下高速气体射流均压和掺混两个过程的基本规律。测量结果表明:水下高速气体射流在欠膨胀工况下运行时,近场将出现含有复杂波系结构的膨胀压缩区域,由于气水的掺混作用,水下欠膨胀气体射流均压化过程比空气中衰减得快。测量结果还表明,水下射流在近场区的混合层由气水两相占据,其流态从靠近气体侧的液滴流型过渡到靠近液体侧的气泡流型。  相似文献   

10.
We present quantitative analysis of image sequences of multi-stream injection nozzle flows with several different injection geometries in an experiment simulating mixing in a chemical oxygen-iodine laser. To visualize mixing, image sequences were acquired with planar laser-induced fluorescence (PLIF) in iodine that was injected into the main flow. The injection nozzle consisted of a slot, ejector, and injector block, with rows of ejector and injector holes along the slot length. The ejector flow exits in an underexpanded state so that upon expanding it forces the slot and injector flows together to enhance mixing. For this study, the diameter and geometry of ejector holes were varied to assess their effect on mixing. Two configurations of ejector holes were used, each with two different diameters for a total of four cases with data collected at downstream stations. We carry out a quantitative mixing analysis for these configurations, using two methods to quantify the mixing. The first method considers the statistics of the PLIF image intensity histograms, which are bimodal for poorly-mixed flows and have a single peak in well-mixed flows. The second method quantifies the properties of the mixing interface. Our analysis shows that two injection schemes significantly enhance mixing by stretching the mixing interface.  相似文献   

11.
Direct numerical and large eddy simulation (DNS and LES) are applied to study passive scalar mixing and intermittency in turbulent round jets. Both simulation techniques are applied to the case of a low Reynolds number jet with Re = 2,400, whilst LES is also used to predict a high Re = 68,000 flow. Comparison between time-averaged results for the scalar field of the low Re case demonstrate reasonable agreement between the DNS and LES, and with experimental data and the predictions of other authors. Scalar probability density functions (pdfs) for this jet derived from the simulations are also in reasonable accord, although the DNS results demonstrate the more rapid influence of scalar intermittency with radial distance in the jet. This is reflected in derived intermittency profiles, with LES generally giving profiles that are too broad compared to equivalent DNS results, with too low a rate of decay with radial distance. In contrast, good agreement is in general found between LES predictions and experimental data for the mixing field, scalar pdfs and external intermittency in the high Reynolds number jet. Overall, the work described indicates that improved sub-grid scale modelling for use with LES may be beneficial in improving the accuracy of external intermittency predictions by this technique over the wide range of Reynolds numbers of practical interest.  相似文献   

12.
Effect of an annular co-flow jet on the center jet at subsonic, correctly expanded and underexpanded sonic conditions was studied experimentally. It is found that the co-flow retards the mixing of the primary jet, leading to potential core elongation. The characteristic decay of the jet is also retarded in the presence of co-flow. With co-flow core length elongation of 40% and 80% were achieved for correctly expanded and underexpanded (NPR 7) sonic jets, respectively. Shadowgraph pictures show that the co-flow is effective in preserving the shock-cell structures of the inner jet, making the jet to propagate to a greater axial distance which otherwise would have decayed faster.  相似文献   

13.
Turbulent opposed jet (TOJ) burners are an interesting test case for fundamental combustion research and a good benchmark for the available modelling approaches. However, these opposed jet flames strongly depend on the turbulence generation inside the nozzle, which is usually achieved through a perforated plate upstream of the nozzle exit. The present work investigates the flow from these perforated plates and the subsequent turbulence generation in great detail. We present results from highly-resolved large eddy simulations (LES) of the in-nozzle flow in turbulent opposed jets alongside state-of-the-art particle image velocimetry (PIV) at standard and high repetition rates taken inside a glass nozzle. The in-nozzle PIV data provides the LES inflow conditions with unprecedented detail, which are used to follow the initial jet development behaviour known from PIV, before jet coalescence, turbulence production and decay further downstream in the nozzles are successfully predicted. In regions where the PIV experiment suffers from inherent limitations like reflections and the velocity bias, the LES data is available to still obtain a detailed picture of the flow. The sensitivity of the simulations to various physical and numerical parameters is discussed in detail. Results from LES and PIV are compared qualitatively and quantitatively in terms of first and second moments of velocity, temporal autocorrelations, and energy density spectra. Significant deviations are found in the frequency (20%) and strength of vortex shedding from the inlet plane only, whereas the qualitative and quantitative agreement between simulation and experiment is otherwise excellent throughout, implying that a successful large eddy simulation of a turbulent opposed jet can be performed in a domain that includes the perforated plates.  相似文献   

14.
The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 31 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.  相似文献   

15.
An experimental and numerical study of underexpanded free sonic jet flows issuing from rectangular, elliptical and slot nozzles has been undertaken. Aspect ratios (AR) of 1, 2, and 4 are described at pressure ratios (exit plane pressure to ambient pressure), of 2 and 3. There is good qualitative agreement between the experimental observations and the numerical predictions. In the case of rectangular jets, a complex system of shock waves forming the incident shock system is identified. This shock wave system originates at the corners of the nozzle exits, and proceeds downstream. Mach reflections are found to occur on the incident shock wave surface as well as the presence of a Mach disk terminating the first jet cell. This Mach disk has the shape of a square, a hexagon, or an octagon depending on the nozzle shape. For slot and elliptical jets, the formation of the incident shock wave was not observed along the minor axis plane of the nozzle for AR > 2. The incident shock wave was observed to originate downstream of the nozzle exit in the major axis plane. This wave system undergoes a transition to Mach reflection as it propagates downstream of the nozzle exit. In all cases tested, the shape of the jet boundary is significantly distorted. In rectangular jets, the narrowing of the jet boundary along the diagonal axis of the nozzle exit is observed, and in the case of the elliptical and slot jets axis switching is noted.  相似文献   

16.
An experimental study of particle velocities in micro-abrasive jets by using the particle image velocimetry (PIV) technique is presented. It has been found that the particle jet flow has a nearly linear expansion downstream. The particle velocities increase with air pressure, and the increasing rate increases with nozzle diameter within the range considered. The instantaneous velocity profile of the particle flow field in terms of the particle velocity distribution along the axial and radial directions of the jets is discussed. For the axial profile in the jet centerline downstream, there exists an extended acceleration stage, a transition stage, and a deceleration stage. For the radial velocity profiles, a relatively flat shape is observed at a jet cross-section near the nozzle exit. Mathematical models for the particle velocities in the air jet are then developed. It is shown that the results from the models agree well with experimental data in both the variation trend and magnitude.  相似文献   

17.
舒畅  宫兆新  刘桦 《力学季刊》2023,44(1):15-30
认识带尾喷流和自然超空泡的水下高速航行体流体动力特性并发展其预报与控制方法仍是水动力学领域极具挑战性的课题.本研究采用CFD方法对尾喷流和自然超空泡之间的相互作用进行了数值研究.针对发动机欠膨胀超音速喷流,采用现有实验结果验证了基于两方程湍流模型的二维轴对称流动数值模型的可靠性.尾喷流在空气和蒸汽环境中流动的数值计算结果表明,由于蒸汽环境中背压较低,欠膨胀尾喷流无法及时形成压缩波,使得蒸汽环境中尾喷流的过膨胀区和气相扩散区的体积比空气中大;尾喷流很难形成规则的激波格栅,波系结构相对简单.针对携尾喷流的平头航行体超空泡流状态的数值模拟结果表明,尾喷流注入超空泡后迅速充满航行体周围的空腔区域;尾喷流与超空泡尾迹区域形成的回射流相互作用最终导致超空泡断裂,断裂过程中伴随着燃气泡的下泄现象;受空泡壁面约束,尾喷流难以在狭窄的超空泡空腔内完全膨胀,尾喷流的激波波系结构有显著的变化:在喷嘴附近受到压缩,在远离喷嘴区域受到超空泡水汽掺混的破坏;空泡内压强基本维持在饱和蒸汽压附近,没有显著增加.  相似文献   

18.
The results of an experimental investigation of the gasdynamic structure of supersonic underexpanded air jets flowing out of a sonic nozzle into a low-pressure medium are presented. This setting of the experimentmakes it possible to achieve high values of the nozzle-to-ambient pressure ratio at moderate outflow Reynolds numbers characteristic of underexpanded jets issuing from micronozzles. The data on the supersonic core length, the laminar-turbulent transition location, and the jet flow characteristics are obtained. The results are compared with those obtained in microjets flowing out of sonic nozzles. Emphasis is placed on the earlier discovered effect of inverse transition of a turbulent jet into the laminar flow regime with increase in the Reynolds number.  相似文献   

19.
We present the results of an experimental investigation and numerical simulation of the gasdynamic structure of underexpanded dissociated-air jets and the heat transfer in these strongly nonequilibrium flows under the test conditions realized in the 100-kW electrodeless VGU-4 plasma generator of the Institute for Problems in Mechanics of the Russian Academy of Sciences (IPM RAS). The flow and heat transfer analysis is carried out on the basis of measurements of the static pressure in the plenum chamber, at the sonic nozzle exit, and on the low-pressure chamber wall, the stagnation pressure on the jet axis using a Pitot tube, and the heat transfer at the stagnation points of water-cooled models placed along the jet axis. The numerical simulation, based on complete Navier-Stokes equations, includes the calculation of (1) equilibrium air plasma flows in the discharge channel of the VGU-4 plasma generator; (2) underexpanded nonequilibrium dissociated-air jet outflow into the ambient space; and (3) axisymmetric jet flow past cylindrical models.  相似文献   

20.
The main results of a numerical study of the effect of the angle of the rim of a nozzle on the shape of the jet boundary and of the free shock and on the distribution of parameters in a three-dimensional underexpanded jet are presented. A noncentered second-order difference scheme is used to solve the gasdynamic equations for an inviscid perfect gas. Conditions are established for which the three-dimensional jet is observed to coincide partially in the radial planes and the corresponding planes of axisymmetric jets.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 105–110, July–August, 1977.In conclusion, the authors thank G. I. Petrov and his colleagues for detailed discussion of the results of the investigation reported here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号