首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
The aims of this paper are fourfold: (1) To develop a set of constitutive equations that are applicable to isotropic inelastic materials with large elastic and plastic strains using the multiconfigurational framework (Rajagopal, K.R., Srinivasa, A.R. Int. J. Plasticity 14 (1998) 945; Rajagopal, K.R., Srinivasa, A.R. Int. J. Plasticity 14 (1998), 948), in such a way as to generalize the central ideas (such as isotropy, constant elastic modulii, quadratic yield surfaces and non-hardening behavior) of the Prandtl–Reuss theory to finite deformations, (2) to examine the consequences of using a physically plausible criterion of maximum rate of mechanical dissipation, (3) to examine the relationship of the resulting models to the classical Prandtl–Reuss theory as well as other possible formulations (specifically those that rely on the use of a maximum plastic work postulate), and (4) to consider the effect of finite elastic strains on the response of the material subject to some simple homogenous deformations. By considering the response under simple shear, it is shown that the elastic-plastic counterpart of the well known Poynting effect in finite elasticity has a profound influence on the post-yield behavior of such materials. In particular, it is shown that this gives rise to a strain softening effect even though the overall response is that of a non-hardening material.  相似文献   

2.
In this paper we extend some of our previous works on continua with stress threshold. In particular here we propose a mathematical model for a continuum which behaves as a non-linear upper convected Maxwell fluid if the stress is above a certain threshold and as a Oldroyd-B type fluid if the stress is below such a threshold. We derive the constitutive equations for each phase exploiting the theory of natural configurations (introduced by Rajagopal and co-workers) and the criterion of the maximization of the rate of dissipation. We state the mathematical problem for a one-dimensional flow driven by a constant pressure gradient and study two peculiar cases in which the velocity of the inner part of the fluid is spatially homogeneous.  相似文献   

3.
In this paper we discuss the computational implementation of a new constitutive model that describes the muscle properties in a soft-bodied arthropod. Qualitatively, the muscle tissues behave similar to particle-reinforced rubber and are capable of large non-linear elastic deformations, show a hysteretic behavior, and display stress softening during the first few cycles of repeated loading. Such behavior can be described by the framework of pseudo-elastic transversely isotropic hyperelasticity. The computational model assumes compressible overall response, and is based upon a multiplicative split of the deformation gradient tensor into volumetric and isochoric parts. Details regarding the implementation of the computational model in the context of an implicit finite element solution procedure are presented. In particular, an explicit expression is provided for the material tangent stiffness tensor. Results obtained utilizing the new implementation are also presented.  相似文献   

4.
The work presented consists essentially of two parts: the first deals with the development of a non-linear constitutive equation for a three-dimensional viscoelastic material with instantaneous and time dependent compressibility; the second deals with the solution of some specific wave propagation problems for three simple three-dimensional geometries. The constitutive equation is based on the existence of elastic and creep potentials and is expressed in terms of single memory integrals with non-linear kernels. The wave propagation problems are solved by numerical integration along the characteristics of the governing equations. The primary conclusion drawn deals with the effect of time dependent compressibility on the dynamic stress, strain and velocity fields. Results indicate that the dynamic response of even slightly time dependent compressible materials varies dramatically from those assumed to have only an instantaneous elastic compressibility.  相似文献   

5.
In order to determine the effect of finite deformations on the stability and non-linear time-deflection behaviour of linearly viscoelastic uniaxially stressed structures, a series of simple rigid-bar-spring dashpot models were analysed ‘exactly’. The material representation was also kept as simple as possible using the standard three-element solid model.Results obtained indicate that the relaxation behaviour of such a structure depends only on its material properties. The creep response is influenced not only by the load level but most significantly by the instantaneous non-linear elastic characteristics of the structure. For structures exhibiting instantaneous elastic local instability a ‘critical time’ may be defined beyond which equilibrium is impossible. The definition for ‘safe-load-limit’ or viscoelastic critical force usually used in linear stability analyses of viscoelastic columns is generalized.  相似文献   

6.
In this paper we solve the time-dependent shear flow of an Oldroyd-B fluid with slip along the fixed wall. We use a non-linear slip model relating the shear stress to the velocity at the wall and exhibiting a maximum and a minimum. We assume that the material parameters in the slip equation are such that multiple steady-state solutions do not exist. The stability of the steady-state solutions is investigated by means of a one-dimensional linear stability analysis and by numerical calculations. The instability regimes are always within or coincide with the negative-slope regime of the slip equation. As expected, the numerical results show that the instability regimes are much broader than those predicted by the linear stability analysis. Under our assumptions for the slip equation, the Newtonian solutions are stable everywhere. The interval of instability grows as one moves from the Newtonian to the upper-convected Maxwell model. Perturbing an unstable steady-state solution leads to periodic solutions. The amplitude and the period of the oscillations increase with elasticity.  相似文献   

7.
Large-amplitude oscillatory squeezing flow data are reported for a complex biological material, which is highly shear-thinning in oscillatory shear flow. This soft tissue has a linear viscoelastic limit at a strain of approximately 0.2%. The oscillatory squeezing flow data at large strain are analyzed using two constitutive models: a bi-viscosity Newtonian model, and a non-linear Maxwell model. It is found that although both models may have the same response in shape, the later matches with our non-linear experimental data better. It is also concluded that the non-linear response of the material in large amplitude oscillatory flow is mainly due to the shear thinning of the material. Received: 9 February 2000/Accepted: 22 February 2000  相似文献   

8.
Recently, [Rao, I.J., Rajagopal, K.R., 2007. Status of the K-BKZ model within the framework of materials with multiple natural configurations. Journal of Non-Newtonian Fluid Mechanics, 141, 79–84] showed that the K-BKZ Model is a special sub-class of models based on a thermodynamic framework that takes into account the fact that bodies are capable of existing stress free in multiple configurations with special choices being made for the way in which the body stores energy and the way it dissipates energy. They also showed that several generalizations of the K-BKZ model are possible. In this short note we show that two distinct methods of storing energy and dissipating energy lead to the classical Maxwell model. That is, in addition to the classical choice for the storage of energy and rate of dissipation (the usual spring dashpot analogy) a more complicated choice also leads to the same model. This result is rather important as it shows that a variety of means for storing and dissipating energy can lead to the same mechanical response, when one restricts oneself to purely mechanical considerations.  相似文献   

9.
In this paper, the film casting process has been simulated using a new model developed recently using the framework of multiple natural configurations to study crystallization in polymers (see Rao and Rajagopal Z. Angew. Math. Phys. 53 (2002) 265; Polym. Eng. Sci. 44(1) (2004) 123; Simulation of the film blowing process for semicrystalline polymers, in press, 2004). In the film casting process, the material starts out as a viscoelastic melt and undergoes deformation and cooling, resulting in a semi-crystalline solid. In order to model the complex changes taking place in the material and predict the behavior of the final solid it is important to use models that are capable of describing these changes. The model used here has been formulated within a general thermodynamic framework that is capable of describing dissipative processes. In addition it handles in a direct manner the change of symmetry in the material; it thus provides a good basis for studying the crystallization process in polymers. The polymer melt is modeled as a rate type viscoelastic fluid and the crystalline solid polymer is modeled as an anisotropic elastic solid. The initiation criterion, marking the onset of crystallization and equations governing the crystallization kinetics arise naturally in this setting in terms of the appropriate thermodynamic functions. The mixture region, wherein the material transitions from a melt to a semi-crystalline solid, is modeled as a mixture of a viscoelastic fluid and an elastic solid. This is in marked contrast to earlier approaches where in the simulation has been done assuming that the material was a viscous fluid and the transition to a solid like behavior is achieved by increasing the viscosity to a large value resulting in a highly viscous fluid and not an elastic solid. The results of our simulations compare well against experimental data available in literature. In addition to these quantitative comparisons have carried out parametric study to study the influence of the different parameters on the film casting process.  相似文献   

10.
This paper deals with the flow characteristics of a class of nonsimple viscoelastic fluid models developed by Rajagopal and Srinivasa (1999). The central feature of these models is that the stress response is lastic from a changing natural configuration with the viscous dissipation occurring due to changes in the natural state. The class of models considered are characterized by three independent parameters that represent respectively the elasticity, the viscosity and the shear thinning index. The stress relaxation response of the material is compared with experimental data reported by Bower et al. (1987) for polyisobutelene in cetane, and parameters that fit the data are calculated. The flow of such a fluid between parallel disks rotating about noncoincident axes (the orthogonal rheometer) is then studied. It is shown that the assumed velocity field leads to a system of second-order nonlinear ordinary differential equations (Rajagopal, 1982). A parametric study is then undertaken to see the effect of the various material, geometrical, and flow parameters on the flow characteristics. It is observed that inertial effects and shear thinning effects are roughly complementary in the range of parameters considered. While it is well known that boundary layers occur in these flows due to inertial effects, it is demonstrated that these boundary effects are insensitive to the Reynolds number but rather are determined by the absorption number. Finally, in the range of parameters that are commonly observed in such rheometers, it is shown that neglect of inertia causes significant discrepancies in the calculation of the boundary shear rates. Received 3 June 1999 and accepted 2 October 1999  相似文献   

11.
A non-linear analysis of the temporal evolution of finite, two-dimensional disturbances is conducted for plane Poiseuille and Couette flows of viscoelastic fluids. A fully-spectral method of solution is used with a stream-function formulation of the problem. The upper-convected Maxwell (UCM), Oldroyd-B and Giesekus models are considered. The bifurcation of solutions for increasing elasticity is investigated both in the high and low Reynolds number regimes. The transition mechanism is discussed in terms of both the transient linear growth of misfit disturbances due to non-normality, and their possible saturation into finite-amplitude periodic solutions due to non-linear effects.  相似文献   

12.
Inertialess flows of elasto-viscoplastic fluids inside a leaky cavity are numerically analyzed using the finite element technique, with the goal of understanding the influence of both the elastic and viscous effects on the topology of the yield surfaces of an elasto-viscoplastic material. Assuming that the collapse of the material microstructure is instantaneous, a mechanical model is composed of the governing equations of mass and momentum for incompressible fluids, and associated with a hyperbolic equation for the extra-stress tensor based on the Oldroyd-B model (Nassar et al., 2011). The main feature of the model is the consideration of the viscosity and relaxation time as functions of the strain rate to allow the shear-thinning of the viscosity and to restrict the elastic effects to the unyielded regions of the material. The numerical simulations are performed through a three-field Galerkin least-squares-type method in terms of the extra-stress tensor and the pressure and velocity fields. The results indicate that the material yield surfaces are strongly influenced by the interplay between the elastic and viscous effects, in accordance with recent experimental visualization of elasto-viscoplastic flows.  相似文献   

13.
A non-linear rate-type constitutive equation, established by Rajagopal, provides a generalization of the Maxwell fluid. This note embodies such a constitutive equation within the scheme of materials with internal variables thus allowing also for solids with both dissipative and thermoelastic mechanisms. The compatibility with the second law of thermodynamics, expressed by the Clausius–Duhem inequality, is examined and the restrictions on the evolution equations are determined. Next the propagation condition of discontinuity waves is derived, for shock waves and acceleration waves, by regarding the body as a definite conductor. Infinitesimal shock waves and acceleration waves show similar effects. The effective acoustic tensor proves to be the sum of a thermoelastic tensor and a tensor arising from the rate-type equation.  相似文献   

14.
The flow of finite-extensibility models in a two-dimensional planar cross-slot geometry is studied numerically, using a finite-volume method, with a view to quantifying the influences of the level of extensibility, concentration parameter, and sharpness of corners, on the occurrence of the bifurcated flow pattern that is known to exist above a critical Deborah number. The work reported here extends previous studies, in which the viscoelastic flow of upper-convected Maxwell (UCM) and Oldroyd-B fluids (i.e. infinitely extensionable models) in a cross-slot geometry was shown to go through a supercritical instability at a critical value of the Deborah number, by providing further numerical data with controlled accuracy. We map the effects of the L2 parameter in two different closures of the finite extendable non-linear elastic (FENE) model (the FENE-CR and FENE-P models), for a channel-intersecting geometry having sharp, “slightly” and “markedly” rounded corners. The results show the phenomenon to be largely controlled by the extensional properties of the constitutive model, with the critical Deborah number for bifurcation tending to be reduced as extensibility increases. In contrast, rounding of the corners exhibits only a marginal influence on the triggering mechanism leading to the pitchfork bifurcation, which seems essentially to be restricted to the central region in the vicinity of the stagnation point.  相似文献   

15.
Generally, the complex behaviour of the disc of the temporomandibular joint (TMJ) cannot be adequately represented using linear elastic or linear viscoelastic models. Since the disc is regularly subjected to large strain and stress levels, the study of its non-linear response under compression is of practical interest, especially for analysis of medical dysfunctions. With this aim, relaxation and creep tests were carried out using round specimens of diameters ranging between 4 and 6 mm cut off from the central, anterior, posterior, lateral and medial zones of porcine discs to investigate the regional mechanical properties differences. The experimental data results are fitted using Prony series, based on generalized Maxwell and Kelvin models, allowing the relaxation and creep moduli to be represented, respectively, as a function of the strain and stress. The results show that the non-linear material behaviour of this biological tissue is properly described by the proposed models, to be considered subsequently in numerical calculations.  相似文献   

16.
This paper models the cyclic stress softening of an elastomer in compression. After the initial compression the material is described as being transversely isotropic. We derive non-linear transversely isotropic constitutive equations for the elastic response, stress relaxation, residual strain, and creep of residual strain in order to model accurately the inelastic features associated with cyclic stress softening. These equations are combined with a transversely isotropic version of the Arruda–Boyce eight-chain model to develop a constitutive relation that is capable of accurately representing the Mullins effect during cyclic stress softening for a transversely isotropic, hyperelastic material, in particular a carbon-filled rubber vulcanizate. To establish the validity of the model we compare it with two test samples, one for filled vulcanized styrene–butadiene rubber and the other for filled vulcanized natural rubber. The model is found to fit this experimental data extremely well.  相似文献   

17.
We study the flow of an Oldroyd-B fluid between two intersecting plates, one of which is fixed and the other moving along its plane. This problem was first considered by Strauss (1975) for the Maxwell fluid using a similarity transformation. We find that even in the case of a Maxwell fluid, which can be obtained by setting a specific parameter, say , in the Oldroyd-B model to zero, our results disagree with those of Strauss (1975). We find that circulating cells are present, adjacent to the stationary plate while Strauss (1975) finds them adjacent to the moving plate. We also delineate the effect of the coefficient , which is a measure of the elasticity of the flow, on the flow pattern. We find that an increase in the elastic parameter reduces the cellular structure.  相似文献   

18.
The finite deformation of a hyperelastic, compressible and anisotropic tube subjected to torsion, circular and axial shearing is studied. The analysis is carried out for a class of Ogden elastic material and the governing non-linear equations are solved numerically with the Runge–Kutta method. The solution is used to study the effects of a specific material model on the local volume change and the circumferential stretch ratio.  相似文献   

19.
Some simple boundary value problems are studied, for a new class of elastic materials, wherein deformations are expressed as non-linear functions of the stresses. Problems involving ‘homogeneous’ stress distributions and one-dimensional stress distributions are considered. For such problems, deformations are calculated corresponding to the assumed stress distributions. In some of the situations, it is found that non-unique solutions are possible. Interestingly, non-monotonic response of the deformation is possible corresponding to monotonic increase in loading. For a subclass of models, the strain-stress relationship leads to a pronounced strain-gradient concentration domain in the body in that the strains increase tremendously with the stress for small range of the stress (or put differently, the gradient of the strain with respect to the stress is very large in a narrow domain), and they remain practically constant as the stress increases further. Most importantly, we find that for a large subclass of the models considered, the strain remains bounded as the stresses become arbitrarily large, an impossibility in the case of the classical linearized elastic model. This last result has relevance to important problems in which singularities in stresses develop, such as fracture mechanics and other problems involving the application of concentrated loads.  相似文献   

20.
将沥青混合料看作由粗骨料和沥青砂组成的两相复合材料,根据给定的级配生成凸多面体骨料,然后利用随机投放算法建立沥青混合料试样的三维随机模型.采用广义Maxwell模型刻画沥青砂的本构行为,其参数通过单轴蠕变实验获得.在对三维随机模型的有效性进行验证之后,采用参数化建模方法建立包含不同骨料分布、含量和级配的沥青混合料有限元...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号